Chứng minh rằng : \(2019/ \sqrt[2]{2018} + 2018/\sqrt[2]{2019} > \sqrt[2]{2018} + \sqrt[2]{2019}\)
Chứng minh rằng : \(\sqrt{1+2018^2+\frac{2018^2}{2019^2}}\) +\(\frac{2018}{2019}\)có giá trị là số tự nhiên
Căn bậc 2 của 1 là 1,của 2018 bình phương là 2018,2018 bình phương/2019 bình phương là 2018/2019 nên cái căn đó có giá trị là 1+2018+2018/2019 nha.bn lấy 2018/2019+2018/2019 nếu là số tự nhiên thì biểu thức này là STN
\(\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(=\)\(\sqrt{\left(1+2.2018+2018^2\right)-2.2018+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(=\)\(\sqrt{2019^2-2.2018+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(=\)\(\sqrt{\left(2019-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
\(=\)\(\left|2019-\frac{2018}{2019}\right|+\frac{2018}{2019}=2019-\frac{2018}{2019}+\frac{2018}{2019}=2019\)
\(\Rightarrow\)\(\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\) là số tự nhiên ( đpcm )
...
:v nãy giải xong thì bị lỗi please signing gì đó...(giải rất kĩ càng,lần này ko giải kĩ nx -_-)
Đặt a = 2018 -> 2019 = a + 1..
Gọi biểu thức trên là A.Quy đồng biểu thức trong căn và rút gọn,ta được:
\(A=\sqrt{\frac{a^4+2a^3+3a^2+2a+1}{\left(a+1\right)^2}}+\frac{a}{a+1}\)
Đặt \(B=a^4+2a^3+3a^2+2a+1\)
\(=a^2\left(a^2+2a+3+\frac{2}{a}+\frac{1}{a^2}\right)\)
\(=a^2\left[\left(a+\frac{1}{a}\right)^2+2\left(a+\frac{1}{a}\right)+1\right]\)
\(=\left[a\left(a+\frac{1}{a}+1\right)\right]^2\) (Làm tắt xíu nhé)
Suy ra \(A=\frac{\left(a+\frac{1}{a}+1\right)a}{\left(a+1\right)}+\frac{a}{a+1}=\frac{a^2+2a+1}{a+1}=\frac{\left(a+1\right)^2}{a+1}=a+1=2019\)
Là số tự nhiên.(đpcm)
chứng minh rằng biểu thức \(B=\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\) có giá trị là 1 số tự nhiên
\(B=\sqrt{\frac{2019^2}{2019^2}+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{\left(2018+1\right)^2}{2019^2}+\frac{2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{1}{2019^2}+\frac{2018^2+2.2018+2018^2}{2019^2}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\frac{1}{2019^2}+2.2018.\frac{1}{2019}+2018^2}+\frac{2018}{2019}\)
\(B=\sqrt{\left(\frac{1}{2019}+2018\right)^2}+\frac{2018}{2019}\)
\(B=\frac{1}{2019}+2018+\frac{2018}{2019}=2019\) là một số tự nhiên
\(B=\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(B=\sqrt{1^2+2018^2+\left(-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2.\frac{2018}{2019}+2.\frac{2018^2}{2019}-2.2018}\)\(+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2+2\left(\frac{2018+2018.2018-2018.2019}{2019}\right)}\)\(+\frac{2018}{2019}\)
\(B=\sqrt{\left(1+2018-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
\(B=1+2018-\frac{2018}{2019}+\frac{2018}{2019}=2019\)
Vậy B có giá trị là 1 số tự nhiên.
Akai Haruma Nguyễn Thanh Hằng Nguyễn Thị Ngọc Thơ
Rút gọn biểu thức S = \(\frac{2019}{2\sqrt{1}+1\sqrt{2}}+\frac{2019}{3\sqrt{2}+2\sqrt{3}}+\frac{2019}{4\sqrt{3}+3\sqrt{4}}+...+\frac{2019}{2019\sqrt{2018}+2018\sqrt{2019}}\)
Mk chỉ cần kết quả thôi , cảm ơn nhiều ạ
Tính \(C=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2019\sqrt{2018}+2018\sqrt{2019}}\)
Ta có: \(\frac{1}{\left(k+1\right)\sqrt{k}+k\sqrt{k+1}}=\frac{\left(k+1\right)\sqrt{k}-k\sqrt{k+1}}{k\left(k+1\right)^2-k^2\left(k+1\right)}\)
\(=\frac{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)}{k^3+2k^2+k-k^3-k^2}\)
\(=\frac{\sqrt{k\left(k+1\right)}\left(\sqrt{k+1}-\sqrt{k}\right)}{k\left(k+1\right)}\)
\(=\frac{\sqrt{k+1}-\sqrt{k}}{\sqrt{k\left(k+1\right)}}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
Lần lượt thay k=1;2;...;2018 ta được:
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{1}{1}-\frac{1}{\sqrt{2}}\)
\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
...
\(\frac{1}{2019\sqrt{2018}+2018\sqrt{2019}}=\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)
Cộng vế theo vế ta được:
\(C=1-\frac{1}{\sqrt{2019}}=...\)
rút gon biểu thức:
1, \(\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\dfrac{1}{a^2}-1}-\dfrac{1}{a}\right)\)
2, \(\dfrac{1+2019\sqrt{2018}-2018\sqrt{2019}}{\sqrt{2018}+\sqrt{2019}+\sqrt{2018.2019}}\)
1)
DKCĐ: a>0,\(a\ne1\)
\(=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}}{a}-\dfrac{1}{a}\right)\)\(=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\right)\)\(=\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}.\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{1+a+1-a+2\sqrt{\left(1+a\right)\left(1-a\right)}}{\left(1+a\right)-\left(1-a\right)}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\)\(=\dfrac{2\left(\sqrt{\left(1+a\right)\left(1-a\right)}+1\right)}{2a}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{\sqrt{\left(1+a\right)\left(1-a\right)}+1}{a}\cdot\dfrac{\sqrt{\left(1-a\right)\left(1+a\right)}-1}{a}\\ =\dfrac{\left(\sqrt{\left(1+a\right)\left(1-a\right)}+1\right)\left(\sqrt{\left(1+a\right)\left(1-a\right)}-1\right)}{a^2}\\ =\dfrac{\left(1+a\right)\left(1-a\right)-1}{a^2}\\ =\dfrac{1-a^2-1}{a^2}\\ =\dfrac{-a^2}{a^2}\\ =-1\)
rút gon:\(\frac{1+2019\sqrt{2018}-2018\sqrt{2019}}{\sqrt{2018}+\sqrt{2019}+\sqrt{2018.2019}}\)
Rút gọn \(\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}+\frac{1-\sqrt{4}+\sqrt{5}}{1+\sqrt{4}+\sqrt{5}}+...+\frac{1-\sqrt{2018}+\sqrt{2019}}{1+\sqrt{2018}+\sqrt{2019}}\)
Rút gọn:
\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2019\sqrt{2018}+2018\sqrt{2019}}\)
Lời giải:
Xét số hạng tổng quát:
\(\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(n+1-n)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Do đó:
\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)
\(=1-\frac{1}{\sqrt{2019}}\)
So sánh \(\sqrt{2019^2-1}-\sqrt{2018^2-1}\) và \(\frac{2.2018}{\sqrt{2019^2-1}+\sqrt{2018^2-1}}\)