Chương I - Căn bậc hai. Căn bậc ba

H24

Rút gọn:

\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2019\sqrt{2018}+2018\sqrt{2019}}\)

AH
10 tháng 8 2018 lúc 16:22

Lời giải:

Xét số hạng tổng quát:

\(\frac{1}{(n+1)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}(n+1-n)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Do đó:

\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2018}}-\frac{1}{\sqrt{2019}}\)

\(=1-\frac{1}{\sqrt{2019}}\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NN
Xem chi tiết
AS
Xem chi tiết
CK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HC
Xem chi tiết
TP
Xem chi tiết
LT
Xem chi tiết