Những câu hỏi liên quan
PB
Xem chi tiết
CT
23 tháng 4 2019 lúc 14:45

Chọn D

Bình luận (0)
NC
Xem chi tiết
NL
16 tháng 9 2021 lúc 23:55

Từ đường tròn lượng giác, trên \(\left(-\dfrac{\pi}{2};3\pi\right)\):

- Nếu \(0< t< 1\) thì \(sinx=t\) có 4 nghiệm

- Nếu \(-1< t< 0\) thì \(sinx=t\) có 3 nghiệm

- Nếu \(t=0\) thì \(sinx=t\) có 3 nghiệm

- Nếu \(t=1\) thì \(sinx=t\) có 2 nghiệm

- Nếu \(t=-1\) thì \(sinx=t\) có 1 nghiệm

Do đó pt đã cho có 5 nghiệm pb trong khoảng đã cho khi:

\(2t^2-\left(5m+1\right)t+2m^2+2m=0\) có 2 nghiệm pb thỏa mãn:

- TH1: \(\left\{{}\begin{matrix}t_1=-1\\0< t_2< 1\end{matrix}\right.\)

- TH2: \(\left\{{}\begin{matrix}-1< 0< t_1\\t_2=1\end{matrix}\right.\)

- TH3:  \(\left\{{}\begin{matrix}t_1=0\\t_2=1\end{matrix}\right.\)

Về cơ bản, chỉ cần thay 1 nghiệm bằng 0 hoặc 1 rồi kiểm tra nghiệm còn lại có thỏa hay ko là được

Bình luận (1)
TN
Xem chi tiết
NL
20 tháng 8 2020 lúc 18:59

1.

\(\Leftrightarrow1-cos^22x-2\left(\frac{1+cos2x}{2}\right)+\frac{3}{4}=0\)

\(\Leftrightarrow-cos^22x-cos2x+\frac{3}{4}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\frac{1}{2}\\cos2x=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=\pm\frac{\pi}{3}+k2\pi\)

\(\Leftrightarrow x=\pm\frac{\pi}{6}+k\pi\)

2.

\(2\left(2cos^2x-1\right)+2cosx-\sqrt{2}=0\)

\(\Leftrightarrow4cos^2x+2cosx-2-\sqrt{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{2}}{2}\\cosx=-\frac{1+\sqrt{2}}{2}< -1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=-\frac{\pi}{4}+l2\pi\end{matrix}\right.\)\(-\frac{\pi}{2}< x< \frac{5\pi}{2}\Rightarrow\left\{{}\begin{matrix}-\frac{\pi}{2}< \frac{\pi}{4}+k2\pi< \frac{5\pi}{2}\\-\frac{\pi}{2}< -\frac{\pi}{4}+l2\pi< \frac{5\pi}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}k=0;1\\l=0;1\end{matrix}\right.\) \(\Rightarrow x=\left\{\frac{\pi}{4};\frac{9\pi}{4};-\frac{\pi}{4};\frac{7\pi}{4}\right\}\)

Có 4 nghiệm

Bình luận (0)
NL
20 tháng 8 2020 lúc 19:03

3. ĐKXĐ: ...

\(2tanx-\frac{2}{tanx}-3=0\)

\(\Leftrightarrow2tan^2x-3tanx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\frac{1}{2}\\tanx=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-\frac{1}{2}\right)+k\pi\\x=arctan\left(2\right)+k\pi\end{matrix}\right.\)

Có 3 nghiệm trong khoảng đã cho \(x=arctan\left(-\frac{1}{2}\right);x=arctan\left(-\frac{1}{2}\right)+\pi;x=arctan\left(2\right)\)

Bình luận (0)
NL
20 tháng 8 2020 lúc 19:11

4. ĐKXĐ: ...

\(\Leftrightarrow\sqrt{3}\left(1+cot^2x\right)=3cotx+\sqrt{3}\)

\(\Leftrightarrow cot^2x-\sqrt{3}cotx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cotx=0\\cotx=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Nghiệm âm lớn nhất của pt là \(x=-\frac{\pi}{2}\)

5. ĐKXĐ; ...

\(\Leftrightarrow tan^2x-\left(1+\sqrt{3}\right)tanx+\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\sqrt{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+l\pi\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-2019\pi< \frac{\pi}{4}+k\pi< 2019\pi\\-2019\pi< \frac{\pi}{3}+l\pi< 2019\pi\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-2019\le k\le2018\\-2019\le l\le2018\end{matrix}\right.\)

Tổng các nghiệm: \(2.\left(-2019\pi\right)+4038\left(\frac{\pi}{3}+\frac{\pi}{4}\right)=-\frac{3365\pi}{2}< -3\)

Đáp án A đúng

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
NL
22 tháng 10 2020 lúc 15:20

1.

\(\Leftrightarrow2cos2x+\sqrt{2}.\frac{\sqrt{2}}{2}=0\)

\(\Leftrightarrow cos2x=-\frac{1}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{\frac{\pi}{3};\frac{4\pi}{3};\frac{2\pi}{3};\frac{5\pi}{3}\right\}\)

2.

\(\Leftrightarrow sin4x-cos4x+sin4x+cos4x=\sqrt{6}\)

\(\Leftrightarrow2sin4x=\sqrt{6}\)

\(\Leftrightarrow sin4x=\frac{\sqrt{6}}{2}>1\)

Pt vô nghiệm

Bình luận (0)
H24
Xem chi tiết
HP
29 tháng 1 2021 lúc 20:58

Đặt \(t=x^2-2x+3\left(t\ge2\right)\)

Phương trình trở thành \(f\left(t\right)=t^2+2\left(3-m\right)t+m^2-6m=0\left(1\right)\)

Phương trình \(\left(1\right)\) có nghiệm \(t_1\ge t_2\ge2\) khi:

\(\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{t_1+t_2}{2}\ge2\\1.f\left(2\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3-m\right)^2-m^2+6m\ge0\\m-3\ge2\\m^2-10m+16\ge0\end{matrix}\right.\)

Giải ra tập giá trị của m rồi lấy các giá trị thuộc \(\left[-10;10\right]\)

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
4 tháng 3 2017 lúc 13:52

Chọn B

Bình luận (0)
JE
Xem chi tiết
NL
15 tháng 7 2020 lúc 11:48

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=\frac{2}{3}\end{matrix}\right.\)

Từ đường tròn lượng giác ta thấy \(sinx=0\) có 4 nghiệm và \(cosx=\frac{2}{3}\) có 3 nghiệm

Vậy pt có 7 nghiệm thuộc khoảng đã cho

Bình luận (0)