\(\left(2x-5\right)^{2020}+\left(2y+4\right)^{2022}\le0\)
Nhờ mọi người giúp ạ!Tìm x , y biết:
\(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2020}\le0\)
Vì \(\left(2x-5\right)^{2016}\ge0\forall x;\left(3y+4\right)^{2020}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2016}+\left(3y+4\right)^{2020}\ge0\)
Mà đề lại cho \(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2020}\le0\)
Nên \(\hept{\begin{cases}\left(2x-5\right)^{2016}=0\\\left(3y+4\right)^{2020}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)
Vậy ..........
vì (2x-5)2016 và (3y+4)2020 >hoặc=0 với mọi x
=>2x-5=3y+4=0
=>x=2/5;y=-4/3
Tìm x,y thỏa mãn:
a)\(^{\left|x+2y\right|+\left|4y-3\right|\le0}\)
b)\(\left|x-y-5\right|+2017\left(y-11\right)^{2018}\le0\)
c)\(^{\left(x+y\right)^{2020}+2018.\left|y-1\right|=0}\)
Tìm x , y biết:
\(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2020}\le0\)
Vì: \(\left(2x-5\right)^{2016}\ge0;\left(3y+4\right)^{2020}\ge0\)
Nên: \(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2020}\le0\)
\(\Leftrightarrow\left(2x-5\right)^{2016}+\left(3y+4\right)^{2020}=0\)
\(\Leftrightarrow\begin{cases}2x-5=0\\3y+4=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}\)
tìm x,y,z,biết:\(|3x-5+(2y+5)^{2018}+\left(4z-3\right)^{2020}|\le0\)
Sửa đề: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\le0\)(1)
Ta có: \(\left|3x-5\right|\ge0;\left(2y+5\right)^{2018}\ge0;\left(4z-3\right)^{2020}\ge0.\)mọi x,y, z.
=> \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}\ge0\)với mọi x, y,z.
Như vậy (1) chỉ xảy ra trường hợp: \(\left|3x-5\right|+(2y+5)^{2018}+\left(4z-3\right)^{2020}=0\)
<=> \(\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{2}\\z=\frac{3}{4}\end{cases}}\)
Vậy...
thầy mình cho đè kia cơ
Nếu đề đúng là như vậy thì làm như sau :
Bài giải
Vì : \(\left|3x-5+\left(2y+5\right)^{2018}+\left(4z-3\right)^{2020}\right|\ge0\)
\(\Rightarrow\) Chỉ xảy ra trường hợp :
\(\left(3x-5\right)+\left(2y+5\right)^{2018}+\left(4z-3\right)^{2020}=0\)
Mà \(\hept{\begin{cases}\left(2y+5\right)^{2018}\ge0\\\left(4z-3\right)^{2020}\ge0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3x-5=0\\\left(2y+5\right)^{2018}=0\\\left(4z-3\right)^{2020}=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{2}\\z=\frac{3}{4}\end{cases}}\)
\(\Rightarrow\text{ }x=\frac{5}{3}\text{ ; }y=-\frac{5}{2}\text{ ; }z=\frac{3}{4}\)
Tìm tất cả các cặp số \(\left(x,y\right)\) thoả mãn: \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}\le0\)
(2x-y+7)^2022>=0 với mọi x,y
|x-3|^2023>=0 với mọi x,y
Do đó: (2x-y+7)^2022+|x-3|^2023>=0 với mọi x,y
mà \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}< =0\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}=0\)
=>2x-y+7=0 và x-3=0
=>x=3 và y=2x+7=2*3+7=13
Tìm x biết:
\(a,\)\(\left(2x+1\right)^3=125\)
\(b,\)\(\left(x-5\right)^4=\left(x-5\right)^6\)
\(c,\)\(\left(2x-15\right)^5=\left(2x-15\right)^3\)
{P/s: Nhờ mọi người ghi cả cách giải ra giúp em ạ, cảm ơn mọi người}
a) \(\left(2x+1\right)^3=125\)
\(\Rightarrow\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2\)
\(\Rightarrow x=2\)
Vậy x = 2
b) \(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\Rightarrow\left(x-5\right)^4-\left(x-5\right)^6=0\)
\(\Rightarrow\left(x-5\right)^4\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^4=0\\1-\left(x-5\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2=1\end{cases}}\)
TH 1 : \(\left(x-5\right)^4=0\Rightarrow x-5=0\Rightarrow x=5\)
TH 2 : \(\left(x-5\right)^2=1\Rightarrow\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}\)
Vậy \(x\in\left\{5;6;4\right\}\)
c) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2=1\end{cases}}\)
TH 1 : \(\left(2x-15\right)^3=0\Rightarrow2x-15=0\Rightarrow2x=15\Rightarrow x=\frac{15}{2}\)
TH 2 : \(\left(2x-15\right)^2=1\Rightarrow\orbr{\begin{cases}2x-15=1\\2x-15=-1\end{cases}}\Rightarrow\orbr{\begin{cases}2x=16\\2x=14\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=7\end{cases}}\)
Vậy \(x\in\left\{\frac{15}{2};8;7\right\}\)
_Chúc bạn học tốt_
Tìm đa thức M biết rằng: \(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2.\) .Tính giá trị của M khi x, y thõa mãn: \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\)
Ta có: \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\left(\forall x\right)\\\left(3y+4\right)^{2020}\ge0\left(\forall y\right)\end{cases}}\Rightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\ge0\left(\forall x,y\right)\)
Mà \(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\left(\forall x,y\right)\)
\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)
Khi đó thay vào ta được:
\(M+5\cdot\left(\frac{5}{2}\right)^2-2\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)=6\cdot\left(\frac{5}{2}\right)^2+9\cdot\frac{5}{2}\cdot\left(-\frac{4}{3}\right)-\left(-\frac{4}{3}\right)^2\)
\(\Leftrightarrow M+\frac{455}{12}=\frac{103}{18}\)
\(\Rightarrow M=-\frac{1159}{36}\)
Nhờ mn giúp mik với ạ
Tìm GTNN
A= \(\left(x-3y\right)^2+\left(2x-1\right)^4\)
B= \(\left|x-2\right|+\left|3x-2y\right|-4\)
C= \(\dfrac{-4}{\left|x+1\right|\left|y-3\right|+2}\)
D=\(\left|x-5\right|+\left|x-1\right|+7\)
tìm x và y biết
a) \(\left|5x+1\right|+\left|6y-8\right|\le0\)
b) \(\left|x+2y\right|+\left|4y-3\right|\le0\)
c) \(\left|x-y+2\right|+\left|2y+1\right|\le0\)