Những câu hỏi liên quan
H24
Xem chi tiết
ML
13 tháng 9 2020 lúc 9:54

GHJHGJYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Bình luận (0)
 Khách vãng lai đã xóa
H24
13 tháng 9 2020 lúc 16:37

\(x_1=\frac{-\left(m-1\right)+\sqrt{\left(m-1\right)^2+8}}{2a}\)

\(x_2=\frac{-\left(m-1\right)-\sqrt{\left(m-1\right)^2+8}}{2a}\)

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
TA
23 tháng 7 2021 lúc 9:06

còn cái nịt

Bình luận (2)
PB
Xem chi tiết
CT
10 tháng 1 2019 lúc 3:30

Phương trình (2m - 1) x 2  - 2(m + 4)x + 5m + 2 = 0 ( m   1 2 )

Bình luận (0)
H24
Xem chi tiết
NT
18 tháng 8 2021 lúc 21:54

d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)

\(=m^2+2m+1-8m-24\)

\(=m^2-6m-23\)

\(=m^2-6m+9-32\)

\(=\left(m-3\right)^2-32\)

Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)

Ta có: \(x_1x_2=\dfrac{m+3}{2}\)

\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)

\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)

\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)

Bình luận (1)
VQ
Xem chi tiết
NL
Xem chi tiết
NT
20 tháng 1 2022 lúc 14:27

a:

\(\text{Δ}=\left(m-1\right)^2-4\left(-2m-1\right)\)

\(=m^2-2m+1+8m+4=m^2+6m+5\)

Để (1) vô nghiệm thì (m+1)(m+5)<0

hay -5<m<-1

Để (1) có nghiệm thì (m+1)(m+5)>=0

=>m>=-1 hoặc m<=-5 

Để (1) có hai nghiệm phân biệt thì (m+1)(m+5)>0

=>m>-1 hoặc m<-5

b: Để (1) có hai nghiệm phân biệt cùng dương thì

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\\m>1\\m< -\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Bình luận (0)
NL
20 tháng 1 2022 lúc 14:48

c. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=3\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)

\(\Leftrightarrow\left(m-1\right)^2+2\left(2m+1\right)=3\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\left(loại\right)\end{matrix}\right.\)

Bình luận (0)
P9
Xem chi tiết
NT
4 tháng 3 2022 lúc 19:00

Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)

a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0

hay m<-1

b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)

\(=m^2+6m+9-8m-8\)

\(=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m 

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)

Bình luận (0)
HB
Xem chi tiết
VV
Xem chi tiết
NT
17 tháng 5 2023 lúc 0:37

a: Khi m=1 thì (1) sẽ là:

x^2-x-8=0

=>\(x=\dfrac{1\pm\sqrt{33}}{2}\)

b: 3x1^2+3x2^2+2x1x2=5

=>3[(x1+x2)^2-2x1x2]+2x1x2=5

=>3[(2m-1)^2-2(-8m)]+2(-8m)=5

=>3(4m^2-4m+1+16m)-16m=5

=>12m^2+36m+3-16m-5=0

=>12m^2+20m-2=0

=>\(m=\dfrac{-5\pm\sqrt{31}}{6}\)

Bình luận (0)