Những câu hỏi liên quan
AT
Xem chi tiết
AT
Xem chi tiết
H24
Xem chi tiết
NL
16 tháng 5 2019 lúc 19:30

Đặt \(x=\sqrt[4]{5}\Rightarrow x^4=5\Rightarrow x^4-5=0\)

\(A=\frac{2}{\sqrt{4-3x+2x^2-x^3}}=\frac{2\left(x+1\right)}{\sqrt{\left(x+1\right)^2\left(4-3x+2x^2-x^3\right)}}\)

\(=\frac{2\left(x+1\right)}{\sqrt{4+5x-x^5}}=\frac{2\left(x+1\right)}{\sqrt{4+x\left(5-x^4\right)}}=x+1=\sqrt[4]{5}+1\)

\(B=\left(\frac{-\sqrt[4]{2}\left(1-\sqrt[4]{2}\right)}{1-\sqrt[4]{2}}+\frac{1+\sqrt{2}}{\sqrt[4]{2}}\right)^2-\frac{\sqrt{1+\sqrt{2}+\frac{1}{2}}}{1+\sqrt{2}}\)

\(=\left(-\sqrt[4]{2}+\frac{1}{\sqrt[4]{2}}+\sqrt[4]{2}\right)^2-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{2}\left(\sqrt{2}+1\right)}\)

\(=\frac{1}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{2}+1\right)^2}}{\sqrt{2}\left(\sqrt{2}+1\right)}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=0\)

Bình luận (0)
NT
Xem chi tiết
NL
13 tháng 3 2020 lúc 23:15

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(\Rightarrow\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{25\sqrt{24}+25\sqrt{24}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{25}}=1-\frac{1}{5}=\frac{4}{5}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
HH
8 tháng 8 2017 lúc 8:02

Bạn trục căn thức ở mẫu rồi trừ đi là xong nhé,vì khi trục căn thức thì ở A mẫu chung là 1,ở B mẫu chung là 2.

Bình luận (0)
H24
8 tháng 8 2017 lúc 8:41

giai ra giup mik di

Bình luận (0)
HH
8 tháng 8 2017 lúc 10:08

A=(√3-√2)/(3-2)+(√4-√3)/(4-3)+......

=√3-√2+√4-√3+......+√25-√24

=√25-√2=5-√2.Câu b tương tự

Bình luận (0)
PM
Xem chi tiết
MT
Xem chi tiết
H24
7 tháng 1 2017 lúc 10:38

\(U\left(n\right)=\frac{1}{\left(n+1\right).\sqrt{n}+n\sqrt{n+1}}\)

\(U\left(n\right)=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n.\left(n+1\right)^2-n^2\left(n+1\right)}=\frac{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}-\sqrt{n}\right)}{n\left(n+1\right)\left(n+1-n\right)}\)

\(U\left(n\right)=\frac{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n}\sqrt{n+1}\right)^2}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(S_{u\left(n\right)}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{25}}=1-\frac{1}{5}< 1\)

Bình luận (0)
QH
Xem chi tiết
TM
12 tháng 10 2020 lúc 14:59

a.\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}+\sqrt{n}\right)\)

áp dụng công thức cho biểu thức A có A>\(2\left(-\sqrt{2}+\sqrt{26}\right)>7\left(1\right)\)

(so sánh bình phương 2 số sẽ ra nha)

\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

áp dụng công thức cho biểu thức A ta CM được

A<\(2\left(\sqrt{2}-\sqrt{2-1}+\sqrt{3}-\sqrt{3-1}+...+\sqrt{25}-\sqrt{25-1}\right)\)

=\(2\left(-\sqrt{1}+\sqrt{25}\right)=2\left(-1+5\right)=2\cdot4=8\left(2\right)\)

từ (1) và (2) => ĐPCM

b. tương tự câu a ta CM đc BT đã cho=B>\(2\sqrt{51}-2\)> \(5\sqrt{2}\left(1\right)\)

và B<\(2\sqrt{50}=\sqrt{2}\cdot\sqrt{2\cdot50}=10\sqrt{2}\left(2\right)\)

từ (1) và (2)=>ĐPCM

(bạn nhớ phải biến đổi 1 thành 1/\(\sqrt{1}\) trc khi áp dụng công thức nha)

MỜI BẠN THAM KHẢO

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
NL
10 tháng 11 2019 lúc 16:53

1/ Nhân cả tử và mẫu với liên hợp của mẫu và rút gọn ta được:

\(A=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{25}-\sqrt{24}\)

\(=\sqrt{25}-1=4\)

b/ \(\sqrt{1+\left(\frac{1}{n}+\frac{1}{n+2}\right)^2}=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+2\right)^2}+\frac{2}{n\left(n+2\right)}}\)

\(=\sqrt{\frac{\left(n^2+2n\right)^2+n^2+\left(n+2\right)^2+2n\left(n+2\right)}{n^2\left(n+2\right)^2}}=\sqrt{\frac{\left(n^2+2n\right)^2+4\left(n^2+2n\right)+4}{n^2\left(n+2\right)^2}}\)

\(=\sqrt{\frac{\left(n^2+2n+2\right)^2}{n^2\left(n+2\right)^2}}=\frac{n^2+2n+2}{n\left(n+2\right)}=1+\frac{2}{n\left(n+2\right)}=1+\frac{1}{n}-\frac{1}{n+2}\)

\(\Rightarrow S=2014+1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2014}-\frac{1}{2016}\)

\(S=2014+1+\frac{1}{2}-\frac{1}{2015}-\frac{1}{2016}=...\)

Bình luận (0)
 Khách vãng lai đã xóa