Cho x,y > 0 và xy = 1. CMR: \(B\ge1\) với \(B=\frac{x^3}{y+1}+\frac{y^3}{x+1}\)
cho B=\(\frac{x^3}{1+y}+\frac{y^3}{1+x}\) (x>0,y>0) tm xy=1
cmr B\(\ge1\)
Cho \(B=\frac{x^3}{1+Y}+\frac{Y^3}{1+x}\) trong do x, y la cac so duong thoa man dieu kien xy = 1. CMR \(B\ge1\)
cho B = \(\frac{x^3}{1+y}+\frac{y^3}{1+x}\)với \(x;y>0\) và \(xy\ge1\) \(CMR:B\ge1\)
Cho x,y,z>0 và xyz=1. CMR: \(\frac{x}{y^3+2}+\frac{y}{z^3+2}+\frac{z}{x^3+2}\ge1\)
1. Cho các số thực dương x,y thỏa mãn x + xy + y = 8. Tính GTNN của biểu thức \(A=x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
2. Cho a,b,c > 1. Tính GTNN của biểu thức \(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
3. Cho 2 số \(x,y\ne0\) thỏa mãn đẳng thức sau: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\). Tính GTLN của biểu thức \(C=\frac{1}{xy}\)
4. Cho các số thực dương a,b,c thỏa mãn abc = 1. Cmr: \(D=\frac{a^4}{b^2\left(c+2\right)}+\frac{b^4}{c^2\left(a+2\right)}+\frac{c^4}{a^2\left(b+2\right)}\ge1\)
5. Cho a,b,c là các số dương không lớn hơn 1. Cmr: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
6. Cho 2 số thực x,y thỏa mãn điều kiện \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\). Cmr: \(\frac{9+3\sqrt{21}}{2}\le x+y\le9+3\sqrt{15}\).
7. Cho x,y,z là các số thực dương thỏa mãn x + y + z = 1. Cmr: \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\).
8. Cho x,y,z là các số thực dương thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015.\) Tìm GTNN của biểu thức: \(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\).
9. Cho các số thực dương x,y thỏa mãn \(\left(x+y-1\right)^2=xy\). Tìm GTNN của biểu thức: \(M=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\).
10. Tìm m để phương trình \(mx^2-\left(5m-2\right)x+6m-5=0\) có 2 nghiệm nghịch đảo nhau.
11. Cho 2 số thực dương x,y thỏa mãn \(x^2+y\ge1\). Tìm GTNN của biểu thức: \(N=y^2+\left(x^2+2\right)^2\).
12. Cho 9 số thực \(a_1,a_2,...,a_9\) không nhỏ hơn -1 và \(a_1^3+a_2^3+...+a_9^3=0\). Tính GTLN của biểu thức \(Q=a_1+a_2+...+a_9\).
13. cho a,b,c > 0 và a + b + c = 1. Cmr: \(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}< 78\)
Mn làm giúp mk với. Mk đang cần gấp
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
Bài 3:
Áp dụng BĐT AM-GM cho các số dương ta có:
\(4=2x^2+\frac{1}{x^2}+\frac{y^2}{4}=x^2+x^2+\frac{1}{x^2}+\frac{y^2}{4}\geq 4\sqrt[4]{\frac{x^2y^2}{4}}\)
\(\Rightarrow 4\geq x^2y^2\Rightarrow 2\geq xy\geq -2\)
Ta thấy khi $xy$ càng tiến về $0$ và dương thì $C=\frac{1}{xy}$ càng lớn. Do đó $C=\frac{1}{xy}$ không có GTLN.
Cho x+y=1 và xy khác 0. CMR
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
cho x+y=0 và xy khác 0
CMR: \(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^3y^3+3}=0\)
Cho \(x\ge1,y\ge1\)
Cmr: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
Lời giải:
Biến đổi tương đương:
\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{1+xy}\)
\(\Leftrightarrow \frac{y^2+1+x^2+1}{(x^2+1)(y^2+1)}\geq \frac{2}{xy+1}\)
\(\Leftrightarrow (xy+1)(x^2+y^2+2)\geq 2(x^2+1)(y^2+1)\)
\(\Leftrightarrow xy(x^2+y^2)+2xy+x^2+y^2+2\geq 2x^2y^2+2x^2+2y^2+2\)
\(\Leftrightarrow xy(x^2+y^2)+2xy-2x^2y^2-x^2-y^2\geq 0\)
\(\Leftrightarrow xy(x^2+y^2-2xy)-(x^2-2xy+y^2)\geq 0\)
\(\Leftrightarrow xy(x-y)^2-(x-y)^2\geq 0\leftrightarrow (xy-1)(x-y)^2\geq 0\)
BĐT trên luôn đúng với mọi $x\geq 1, y\geq 1$. Do đó ta có đpcm.
Dấu "=" xảy ra khi $xy=1$ hoặc $x=y\geq 1$
1.Cho 3 số thực a,b,c không âm thỏa mãn a+b+c=1. CMR
\(b+c\ge16abc\). Dấu = xảy ra khi nào?
2. Cho x,y,z là các số thực khác 0 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)CMR:
\(\frac{xy}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=3\)
2. Có : 1/x + 1/y + 1/z = 0
=> 1 + x/y + x/z = 0 => x/y + x/z = -1
Tương tự : y/x + y/z = -1 ; z/x + z/y = -1
=> x/y + x/z + y/x + y/z + z/x + z/y = -3
Lại có : 1/x+1/y+1/z = 0
<=> xy+yz+zx/xyz = 0
<=> xy+yz+zx = 0
Xét : 0 = (xy+yz+zx).(1/x^2+1/y^2+1/z^2)
= xy/z^2+xz/y^2+xy/z^2+x/y+y/x+y/z+z/y+z/x+x/z
= xy/z^2+xz/y^2+xy/z^2-3
=> xy/z^2+xz/y^2+xy/z^2 = 3
=> ĐPCM
Tk mk nha
Áp dụng BĐT Cô si ta có:
\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)
Mà \(\left(b+c\right)^2\ge4bc\)
\(\Rightarrow b+c\ge4a.4bc=16abc\)