Những câu hỏi liên quan
BB
Xem chi tiết
MH
24 tháng 9 2021 lúc 5:34

Ta có: 

\(R=\)\(\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)

\(=\)\(\dfrac{\sqrt{10}+3\sqrt{2}}{5+\sqrt{5}}+\dfrac{\sqrt{10}-3\sqrt{2}}{5-\sqrt{5}}\)

\(=\dfrac{4\sqrt{2}}{\sqrt{5}\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

\(=\dfrac{4\sqrt{2}}{4\sqrt{5}}=\sqrt{\dfrac{2}{5}}\)

Làm câu S tương tự như này rồi đối chiếu kết quả nha

Bình luận (0)
BB
Xem chi tiết
NA
Xem chi tiết
NT
27 tháng 7 2021 lúc 23:31

a) \(\sqrt[3]{7+5\sqrt{2}}=\sqrt{2}+1\)

b) \(-6\sqrt[3]{7}=\sqrt[3]{\left(-6\right)^3\cdot7}=\sqrt[3]{-1512}\)

\(7\sqrt[3]{-6}=\sqrt[3]{7^3\cdot\left(-6\right)}=\sqrt[3]{-2058}\)

mà -1512>-2058

nên \(-6\sqrt[3]{7}>7\cdot\sqrt[3]{-6}\)

Bình luận (0)
NH
Xem chi tiết
HN
Xem chi tiết
GN
Xem chi tiết
AN
24 tháng 8 2016 lúc 9:29

Giả sử \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)\(\le\sqrt{3}\)

<=> 4 + \(\sqrt{7}\)+ 4 - \(\sqrt{7}\)- 2×\(\sqrt{16-7}\)\(\le3\)

<=> 8 - 6 \(\le3\)

<=> 2 \(\le3\)(đúng)

Vậy \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)< √3

Bình luận (0)
NT
24 tháng 8 2016 lúc 7:29

\(\sqrt{4+7}-\sqrt{4-\sqrt{7}}=2,152902878\)

\(\sqrt{3}=1,732050808\)

Rùi so sánh đi

Bình luận (0)
MT
Xem chi tiết
TT
8 tháng 8 2015 lúc 8:55

\(\sqrt{2}B=\sqrt{8-2\sqrt{7}}+2=\sqrt{\left(\sqrt{7}-1\right)^2}+2=\sqrt{7}-1+2=\sqrt{7}+1\)

\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}+1\right)^2}=\sqrt{7}+1\)

Vậy A = B 

Bình luận (0)
DG
8 tháng 8 2015 lúc 8:51

A = 11 

B = 7 

--> A > B 

Bình luận (0)
TL
8 tháng 8 2015 lúc 8:58

\(A\sqrt{2}=\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}\right)^2+2\sqrt{7}+1}=\sqrt{\left(\sqrt{7}+1\right)^2}=\sqrt{7}+1\)

\(B\sqrt{2}=\sqrt{8-2\sqrt{7}}+\left(\sqrt{2}\right)^2=\sqrt{\left(\sqrt{7}-1\right)^2}+2=\sqrt{7}-1+2=\sqrt{7}+1\)

=> \(A\sqrt{2}=B\sqrt{2}\) => A = B

Bình luận (0)
HN
Xem chi tiết
LT
Xem chi tiết
OO
1 tháng 7 2017 lúc 12:19

dell bt

Bình luận (0)