Mong cac ban giai giup minh voi
\(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{99}+\sqrt{100}}\)
giup minh voi
cam on nhieu
cac ban giai chi tiet giup minh nha
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\Rightarrow\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.......+\frac{1}{\sqrt{99}+\sqrt{100}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-......-\sqrt{99}+\sqrt{100}=10-1=9\)
Cho các số thực dương a,b,c,d. Chung minh rang \(\frac{b}{\left(a+\sqrt{b}\right)^2}+\frac{a}{\left(b+\sqrt{a}\right)^2}\ge\frac{\sqrt{bd}}{ac+\sqrt{bd}}\)
Giup mk voi cac ban
giải phương trình
\(\left(\sqrt{2x+3}-\sqrt{x+1}\right)\left(\sqrt{2x^2+5x+3}+1\right)\)=x+2
giai giup em voi em can gap
Có \(2x^2+5x+3=2x^2+2x+3x+3=2x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(2x+3\right)\)
\(\Rightarrow\left(\sqrt{2x+3}-\sqrt{x+1}\right)\left(\sqrt{2x^2+5x+3}+1\right)=x+2\left(ĐKXĐ:x\ge-1\right)\\ \Leftrightarrow\left(\sqrt{2x+3}-\sqrt{x+1}\right)\left(\sqrt{\left(2x+3\right)\left(x+1\right)}+1\right)=2x+3-\left(x+1\right)\left(1\right)\)
Đặt \(\sqrt{2x+3}=a\ge1,\sqrt{x+1}=b\ge0\), phương trình (1) trở thành:
\(\left(a-b\right)\left(ab+1\right)=a^2-b^2\)
\(\left(a-b\right)\left(ab+1\right)-\left(a-b\right)\left(a+b\right)=0\\ \Leftrightarrow\left(a-b\right)\left(ab+1-a-b\right)=0\\ \Leftrightarrow\left(a-b\right)\left[a\left(b-1\right)-\left(b-1\right)\right]=0\\ \Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\\
\Leftrightarrow\left[{}\begin{matrix}a-b=0\\a-1=0\\b-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\)
+) Với a=b ta có: \(\sqrt{2x+3}=\sqrt{x+1}\Leftrightarrow2x+3=x+1\Leftrightarrow x=-2\left(ktm\right)\)
+) Với a=1 ta có: \(\sqrt{2x+3}=1\Leftrightarrow2x+3=1\Leftrightarrow x=-1\left(tm\right)\)
+) Với b=1 ta có : \(\sqrt{x+1}=1\Leftrightarrow x+1=1\Leftrightarrow x=0\left(tm\right)\)
Vậy phương trình có tập nghiệm \(S=\left\{-1;0\right\}\).
Tick cho mình nha <3 !!!
Giai phuong trinh giup minh 3 cau nay voi
a,\(3x\left(2-\sqrt{4}\right)=3\left(\sqrt{4}x+1\right)\)
b,\(\left(5-x\right).\left(\sqrt{3}+x\right)-5=0.\)
c,\(\left(x^2-2x\right)+\left(-4+8x\right)=0.\)
Giai cac phuong trinh vo ti sau
1. \(\sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}\)
2. \(\left(\sqrt{1+x}-1\right)\left(\sqrt{1-x}+1\right)=2x\)
3. \(x=\left(2018+\sqrt{x}\right)\left(1-\sqrt{1-\sqrt{x}}\right)^2\)
giup mk nha
Mong cac ban giup minh
tim so x khong am biet
\(\sqrt{X}< \sqrt{2}\)
\(\sqrt{X}< 3\)
cac ban giai giup mk bai nay nha
\(\sqrt{19+8\sqrt{3}}-\sqrt{19-8\sqrt{3}}=?\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=?\)
\(\sqrt{19+8\sqrt{3}}-\sqrt{19-8\sqrt{3}}\)
\(=\sqrt{4^2+8\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{4^2-8\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}+4\right)^2}-\sqrt{\left(\sqrt{3}-4\right)^2}\)
\(=\left|\sqrt{3}+4\right|-\left|\sqrt{3}-4\right|\)
\(=\sqrt{3}+4-\sqrt{3}+4\)
\(=8\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
\(=\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}+1^2}+\sqrt{\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}+1^2}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(=\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)
Giai pt:
a, \(x^2+\sqrt[3]{x^4-x^2}=2x+1\)
b, \(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)
c, \(\sqrt{2x^2+7x+10}+\sqrt{2x^2+x+4}=3\left(x+1\right)\)
d, \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
Mong moi nguoi giup do, em can gap !!!
giup dum minh voi nha cac ban :
\(\sqrt{4+\sqrt{5.\sqrt{3+5.\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}}\)