Những câu hỏi liên quan
NB
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
MY
14 tháng 11 2021 lúc 12:55

\(a,\overrightarrow{AB}-\overrightarrow{DA}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{0}=\overrightarrow{AD}\)

\(b,\overrightarrow{AM}=\dfrac{\overrightarrow{AO}+\overrightarrow{AB}}{2}=\dfrac{\overrightarrow{AB}}{2}+\dfrac{\dfrac{1}{2}\overrightarrow{AC}}{2}=\overrightarrow{\dfrac{AB}{2}}+\dfrac{1}{4}\overrightarrow{AC}\)

\(=\overrightarrow{\dfrac{AB}{2}}+\dfrac{\overrightarrow{AB}+\overrightarrow{BC}}{4}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{\overrightarrow{BC}}{4}=\dfrac{1}{4}\overrightarrow{BC}+\dfrac{3}{4}\overrightarrow{AB}\left(1\right)\)

\(\overrightarrow{AN}=\overrightarrow{BN}-\overrightarrow{BA}=k.\overrightarrow{BC}+\overrightarrow{AB}\left(2\right)\)

\(\left(1\right)\left(2\right)A,M,N\) \(thẳng\) \(hàng\Leftrightarrow\dfrac{k}{\dfrac{1}{4}}=\dfrac{1}{\dfrac{3}{4}}\Leftrightarrow k=\dfrac{1}{3}\)

Bình luận (0)
NQ
Xem chi tiết
NT
15 tháng 11 2023 lúc 20:34

\(\overrightarrow{OC}-\overrightarrow{OB}=\overrightarrow{BO}+\overrightarrow{OC}=\overrightarrow{BC}\)(1)

ABCD là hình bình hành

=>\(\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{BC}\)

=>\(\overrightarrow{BC}=\overrightarrow{BD}-\overrightarrow{BA}\left(2\right)\)

Từ (1) và (2) suy ra \(\overrightarrow{OC}-\overrightarrow{OB}=\overrightarrow{BD}-\overrightarrow{BA}\)

Bình luận (0)
NL
Xem chi tiết
NL
4 tháng 1 2024 lúc 15:51

\(\overrightarrow{AM}=\overrightarrow{MB}=\overrightarrow{MA}+\overrightarrow{AB}=-\overrightarrow{AM}+\overrightarrow{AB}\Rightarrow2\overrightarrow{AM}=\overrightarrow{AB}\Rightarrow\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}\)

\(\overrightarrow{AN}=2\overrightarrow{ND}=2\left(\overrightarrow{NA}+\overrightarrow{AD}\right)=-2\overrightarrow{AN}+2\overrightarrow{AD}\Rightarrow3\overrightarrow{AN}=2\overrightarrow{AD}\Rightarrow\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AD}\)

Do K là trung điểm MN 

\(\Rightarrow\overrightarrow{AK}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AD}\right)=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AD}\)

Theo tính chất hbh: \(\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}\)

Do O là tâm hình bình hành \(\Rightarrow\overrightarrow{AO}=\overrightarrow{OC}=\dfrac{1}{2}\overrightarrow{AC}\)

Mà H là trung điểm OC \(\Rightarrow\overrightarrow{OH}=\dfrac{1}{2}\overrightarrow{OC}=\dfrac{1}{4}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{AH}=\overrightarrow{AO}+\overrightarrow{OH}=\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\)

\(\Rightarrow\overrightarrow{KH}=\overrightarrow{KA}+\overrightarrow{AH}=-\overrightarrow{AK}+\overrightarrow{AH}\)

\(=-\dfrac{1}{4}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AD}+\dfrac{3}{4}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{5}{12}\overrightarrow{AD}\)

Bình luận (0)
NT
4 tháng 1 2024 lúc 15:48

\(\overrightarrow{AN}=2\overrightarrow{ND}\)

=>A,N,D thẳng hàng và AN=2ND

ABCD là hình bình hành tâm O

=>O là trung điểm chung của AC và BD

H là trung điểm của OC

nên HO=HC=1/2CO

=>\(HO=HC=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot CA=\dfrac{1}{4}CA\)

\(\overrightarrow{AM}=\overrightarrow{MB}\)

=>AM=MB và M nằm giữa A và B

=>M là trung điểm của AB

AN+ND=AD

=>2ND+ND=AD

=>AD=3ND

=>AN/AD=2/3

=>\(\overrightarrow{AN}=\dfrac{2}{3}\cdot\overrightarrow{AD}\)

\(\overrightarrow{KH}=\overrightarrow{KM}+\overrightarrow{MH}\)

\(=\dfrac{1}{2}\overrightarrow{NM}+\overrightarrow{MB}+\overrightarrow{BC}+\overrightarrow{CH}\)

\(=\dfrac{1}{2}\left(\overrightarrow{NA}+\overrightarrow{AM}\right)+\dfrac{1}{2}\overrightarrow{AB}+\overrightarrow{BC}+\dfrac{1}{4}\overrightarrow{CA}\)

\(=\dfrac{1}{2}\left(-\dfrac{2}{3}\overrightarrow{AD}+\dfrac{1}{2}\overrightarrow{AB}\right)+\dfrac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}+\dfrac{1}{4}\left(\overrightarrow{CD}+\overrightarrow{CB}\right)\)

\(=-\dfrac{1}{3}\overrightarrow{AD}+\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}-\dfrac{1}{4}\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{AD}\)

\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{5}{12}\overrightarrow{AD}\)

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 12 2018 lúc 13:40

Các vecto cùng phương  O C →  với  có điểm đầu và điểm cuối là các đỉnh của lục giác

: .

Chọn C.

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 6 2019 lúc 5:11

Chọn C.

Các vecto cùng phương với  có điểm đầu và điểm cuối là các đỉnh của lục giác

Bình luận (0)
H24
Xem chi tiết
NT
4 tháng 1 2022 lúc 19:22

Chọn C

Bình luận (0)
DL
Xem chi tiết
NT
26 tháng 9 2021 lúc 14:21

a: \(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{AD}\)

b: \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{BD}-\overrightarrow{BD}=\overrightarrow{0}\)

 

Bình luận (1)
H24
Xem chi tiết
LH
12 tháng 9 2021 lúc 7:38

Do ABCD là hình bình hành

\(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\overrightarrow{BC}-\overrightarrow{AB}=\overrightarrow{BC}-\overrightarrow{DC}=\overrightarrow{BC}+\overrightarrow{CD}=\overrightarrow{BD}\)

Bình luận (0)