CMR
\(a^2\left(a+1\right)+2a\left(a+1\right)\)chia hết cho 6 với a \(\varepsilon\)Z
2 chứng minh rằng :
a) \(a^2\left(a+1\right)+2a\left(a+1\right)\)chia hết cho 6 với a∈Z
b)\(a\left(2a-3\right)-2a\left(a+1\right)\)chia hết cho 5 với a∈Z
a, \(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)
Vì \(a,a+1\) là 2 số tự nhiên liên tiếp nên:
\(\Rightarrow a\left(a+1\right)\) chia hết cho \(2\)
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2\)
Vì \(a,a+1,a+2\) là 3 số tự nhiên liên tiếp nên:
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho 3
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(2.3\)
\(\Rightarrow a\left(a+1\right)\left(a+2\right)\) chia hết cho \(6\left(đpcm\right)\)
b, \(a\left(2a-3\right)-2a\left(a+1\right)\)
\(=a\left[2a-3-2\left(a+1\right)\right]\)
\(=-5a\) chia hết cho \(5\left(đpcm\right)\)
CMR
\(a^2\left(a+1\right)+2a\left(a+1\right)\) chia hết cho 6 với a là số nguyên
\(a\left(2a-3\right)-2a\left(a+1\right)\) chia hết cho 5 với a là số nguyên
\(x^2+2x+2>0\) với mọi x
\(x^2-x+1>0\) với mọi x
\(-x^2+4x-5< 0\) với mọi x
\(-x^2+4x-5\)
\(=\left(-x+4x-4\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vì -1<0
Nên \(-x^2+4x-5< 0\) với mọi x
a ,\(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\)
\(\Leftrightarrow a\left(a+1\right)\left(a+2\right)⋮6\)
Vì a(a+1) là 2 số nguyên liên tiếp nên chia hết cho 2
Vì a (a+1)(a+2) là 3 số nguyên liên tiêp nên chia hết cho 3
Mà 2 và 3 là 2 số nguyên tố cùng nhau
\(\Rightarrow a\left(a+1\right)\left(a+2\right)⋮6\) hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\) (đpcm)
b,\(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)
\(\Leftrightarrow2a^2-3a-2a^2-2a⋮5\)
\(\Leftrightarrow-5a⋮5\) (đúng)
Vậy \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\)
c,\(x^2+2x+2>0\forall x\)
Ta có \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\)
Vậy \(x^2+2x+2>0\forall x\)
d,\(x^2-x+1>0\forall x\)
Ta có: \(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
Vậy \(x^2-x+1>0\forall x\)
e,\(-x^2+4x-5< 0\forall x\)
Ta có \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\)
Vậy \(-x^2+4x-5< 0\forall x\)
\(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)
Vì \(a,a+1,a+2\) là 3 số nguyên liên tiếp
Nên \(a\left(a+1\right)\left(a+2\right)⋮6\)
Vậy \(a^2\left(a+1\right)+2a\left(a+1\right)\) luôn chia hết cho 6 với mọi số nguyên a
Chứng tỏ rằng biểu thức \(a^2\left(a+1\right)+2a\left(a+1\right)\) chia hết cho 6 với \(a\in Z\)
Ta có:a2(a+1)+2a(a+1)=(a+1)(a2+2a)=a(a+1)(a+2)
Vì a(a+1)(a+2) là tích của 3 thừa số nguyên liên tiếp(a thuộc Z) nên trong tích luôn tồn tại 1 thừa số ⋮2 ; 1 thừa số ⋮3
=>a(a+1)(a+2)⋮2.3=6 hay a2(a+1)+2a(a+1)⋮6
Bài 9:
a)\(a^2\left(a+1\right)+2a\left(a+1\right)\)chia hết cho 6 với a là số nguyên
b)\(a\left(2a-3\right)-2a\left(a+1\right)\)chia hết cho 5 với a là số nguyên
c)cho \(a+b+c=0\).Chứng minh rằng :\(a^3+b^3+c^3=3abc\)
CMR:
1)\(\text{a}^2\left(\text{a}+1\right)+2\text{a}\left(\text{a}+1\right)\)chia hết cho 6 với a la số nguyên
2)\(\text{a}\left(2\text{a}-3\right)-2\text{a}\left(\text{a}+1\right)\)chia hết cho 5 với a la số nguyên
1)
\(a^2\left(a+1\right)+2a(a+1)\)
\(=a\left(a+1\right)\left(a+2\right)\)
mà a; a+1 ; a+2 là 3 số nguyên liên tiếp luôn \(⋮6\)
=> đpcm
1) a2(a+1) + 2a(a+1)
=(a+1)(a2+2a)
=a(a+1)(a+2)
Vì a; a+1; a+2 là tích 3 số nguyên liên tiếp
=> a(a+1)(a+2) \(⋮\)6
hay a2(a+1) + 2a(a+1) \(⋮\)6
2) a(2a-3) - 2a(a+1)
=2a2-3a-2a2-2a
=-5a \(⋮\)5
hay a(2a-3) - 2a(a+1) \(⋮\)5
Chứng minh rằng với mọi số nguyên a thì \(a^2\left(a+1\right)+2a\left(a+1\right)\) chia hết cho 6.
\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 3 và có ít nhất 1 số chẵn nên \(a\left(a+1\right)\left(a+2\right)⋮6\)
Vậy \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\left(đpcm\right)\)
CMR: n\(\in\)Z
a)\(\left(n+3\right)^2-\left(n-1\right)^2\)chia hết cho 8
b)\(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24
c)\(\left(n^2+3n+1\right)^2-1\)chia hết cho 24 \(\forall\)n\(\in\)Z
a) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)
\(=\left(2n+2\right)4\)
\(=2\left(n+1\right).4\)
\(=8\left(n+1\right)⋮8\)
=> đpcm
a/\(\left(n+3\right)^2-\left(n-1\right)^2.\)
\(=\left(n^2+6n+9\right)-\left(n^2-2n+1\right)\)
\(=n^2+6n+9-n^2+2n-1\)
\(=8n+8\)
\(=8\left(n+1\right)\)
có \(8\left(n+1\right)⋮8\)
\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)
b/ \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left(n^2+12n+36\right)-\left(n^2-12n+36\right)\)
\(=n^2+12n+36-n^2+12n-36\)
\(=24n\)
có \(24n⋮24\)
\(\Rightarrow\left(n+6\right)^2-\left(n-6\right)^2⋮24\)
Giúp mình với!
Câu 1: CMR với mọi a,b thuộc Z :
a, \(a^3b-ab^3\) chia hết cho 6 b,\(a^5b-ab^5\) chia hết cho 30
Câu 2: CMR tồn tại 1 bội của 203 có dạng: 200420042004....20042004
Câu 3: Tìm n thuộc N sao cho \(x^{2n}+x^n+1\) chia hết cho \(x^2+x+1\)
Câu 4: CMR với mọi n thuộc N \(\left(x^n-1\right)\left(x^{n+1}-1\right)\) chia hết cho \(\left(x+1\right)\left(x-1\right)^2\)
Giúp mình với khó quá! Ai làm hộ mình mình like tất! Làm mấy câu cũng đc! khoảng 2h 50 mình lấy nha mấy bạn thân ui!
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha
1. \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\) Cmr: \(\frac{x^2}{\left(x+1\right)^2}+\frac{y^2}{\left(y+1\right)^2}+\frac{z^2}{\left(z+1\right)^2}\ge\frac{3}{4}\)\
2. \(a,b,c>0.\) cmr: \(\Sigma\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\le\frac{1}{a+b+c}\)
Câu 1: \(P=\sum\frac{1}{\left(1+\frac{1}{x}\right)^2}\) đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\Rightarrow abc=1\)
Nó chính là dòng 5 trở đi của bài 4 này, ko làm lại nữa nhé:
Câu hỏi của bach nhac lam - Toán lớp 9 | Học trực tuyến
Câu 2:
\(\frac{a^3}{\left(a^2+b^2+a^2\right)\left(a^2+a^2+c^2\right)}\le\frac{a^3}{\left(a^2+ab+ac\right)^2}=\frac{a}{\left(a+b+c\right)^2}\)
Tương tự, cộng lại và rút gọn sẽ có đpcm
Vũ Minh Tuấn, Băng Băng 2k6, Phạm Lan Hương, Pumpkin Night, No choice teen, HISINOMA KINIMADO,
tth, Nguyễn Lê Phước Thịnh, Chu Tuấn Minh, Lê Thị Hồng Vân, @Trần Thanh Phương, @Nguyễn Việt Lâm,
@Akai Haruma
giúp e vs ạ! thanks trước