Những câu hỏi liên quan
TV
Xem chi tiết
LL
Xem chi tiết
NT
2 tháng 2 2022 lúc 22:27

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)

Trường hợp 1: 2x-3y+5z=-1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)

Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5

Trường hợp 2: 2x-3y+5z=1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)

Do đó: x=15/70=3/14; y=1/7; z=1/5

Bình luận (0)
HB
Xem chi tiết
NC
19 tháng 12 2018 lúc 12:31

x, y tỉ lệ nghịch vs 2, 3 

=> 2.x=3.y=> \(x=\frac{3}{2}y\)

y, z tỉ lệ thuận với 4, 3 

=> \(\frac{y}{4}=\frac{z}{3}\Rightarrow z=\frac{3}{4}y\)

Em thay vào tính nhé

Bình luận (0)
HB
20 tháng 12 2018 lúc 13:42

em cảm ơn cô

Bình luận (0)
AM
Xem chi tiết
ND
1 tháng 11 2018 lúc 20:10

Max dễ

Bình luận (0)
H24
Xem chi tiết
PT
18 tháng 2 2018 lúc 21:25

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

Bình luận (0)
HL
Xem chi tiết
DN
Xem chi tiết
CH
14 tháng 12 2017 lúc 17:26

Thay x=12 vào x/y=3/4 ta có:

12/y=3/4

=>12.4=3y

=>y=48:3=16

Vậy y=16

b)Ta có:x/y=3/4=>x/3=y/4

Đặt x/3=y/4=k=>x=3k,y=4k

Ta có:2x+y=10

hay 2.3k+4k=10

=>6k+4k=10

=>k(6+4)=10

=>10k=10=>k=1

Do đó:x/3=1=>x=1.3=3

y/4=1=>y=1.4=4

Vậy x=3;y=4

Bình luận (0)
LV
14 tháng 12 2017 lúc 17:27

Đáp án của mình

Câu a, x= 16

Câu b, x=3,y=4

Bình luận (0)
H24
14 tháng 12 2017 lúc 17:27

a) \(\frac{12}{y}=\frac{3}{4}\)

\(\Rightarrow y=\frac{12.4}{3}\)

\(\Rightarrow y=16\)

vậy khi \(x=12\)thì \(y=16\)

Bình luận (0)
YY
Xem chi tiết
PC
Xem chi tiết
H24
30 tháng 12 2017 lúc 20:57

\(\frac{x}{y}=\frac{5}{3}\) <=> 3x=5y <=> \(\frac{x}{5}=\frac{y}{3}\)

+) Theo tính chất DTSBN ta có :

\(\frac{x}{5}=\frac{y}{3}=\frac{2x}{2.5}=\frac{y}{3}=\frac{2x+y}{10+3}=\frac{-26}{13}=-2\)

x/5=-2=>x=(-2).5=-10

y=3=-2=>y=(-2).3=-6

+) Theo tính chất DTSBN ta có :

\(\frac{x}{5}=\frac{y}{3}\Leftrightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{5^2-3^2}=\frac{4}{16}=\frac{1}{4}\)

x/5=1/4=>x=1/4.5=5/4

y/3=1/4=>y=1/4.3=3/4

+) Đặt k ta có : 

\(\frac{x}{5}=k\Rightarrow x=5k\)

\(\frac{y}{3}=k\Rightarrow y=3k\)

x.y=60 <=> 5k.3k = 60

15k2=60

k2=60:15

k2=4

=> k=2

x=5k=2.5=10

y=3k=2.3=6

Bình luận (0)
ND
30 tháng 12 2017 lúc 20:55

Xét x^2 - y^2 = 4

Để biểu thức trên đúng thì x^2 = 4 và y^2 = 0 

Vậy x có thể có 2 giá trị là -2 và 2

Lại có x . y = 60

Mà số y = 0 nên x . y chắc chắn cũng bằng 0 

Vậy không tồn tại 2 số x và y thỏa mãn các điều kiện trên 

Bình luận (0)