\(\frac{1+2\sin^2x-3\sqrt{2}\sin x+\sin2x}{2\sin x\cos x-1}=1\)
giải phương trình
\(\sin x\sqrt{1+2\sin x}=\cos2x\)
\(\sin\left(\frac{5x}{2}-\frac{\pi}{4}\right)-\cos\left(\frac{x}{2}-\frac{\pi}{4}\right)=\sqrt{2}\cos\frac{3x}{2}\)
\(3\sqrt{\tan x+1}\left(\sin x+2\cos x\right)=5\left(\sin x+3\cos x\right)\)
\(\sqrt{2}\left(\sin x+\sqrt{3}\cos x\right)=\sqrt{3}\cos2x-\sin2x\)
\(\sin2x\sin4x+2\left(3\sin x-4\sin^2x+1\right)=0\)
a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp
b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)
\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)
\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)
\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)
c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:
\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)
Đặt \(\sqrt{tanx+1}=t\ge0\)
\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)
\(\Leftrightarrow3t^3-5t^2+3t-10=0\)
\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)
d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)
Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)
\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)
\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)
1. Tìm m để PT có nghiệm:
a) \(\sqrt{3}\cos^2x+\dfrac{1}{2}\sin2x=m\)
b) \(3\sin^2x-2\sin x\cos x+m=0\)
c) \(\sin^2x+2\left(m-1\right)\sin x\cos x-\left(m+1\right)\cos^2x=m\)
b.
\(\Leftrightarrow\dfrac{3}{2}\left(1-cos2x\right)-sin2x+m=0\)
\(\Leftrightarrow sin2x+\dfrac{3}{2}cos2x-\dfrac{3}{2}=m\)
\(\Leftrightarrow\dfrac{\sqrt{13}}{2}\left(\dfrac{2}{\sqrt{13}}sin2x+\dfrac{3}{\sqrt{13}}cos2x\right)-\dfrac{3}{2}=m\)
Đặt \(\dfrac{2}{\sqrt{13}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\)
\(\Rightarrow\dfrac{\sqrt{13}}{2}sin\left(2x+a\right)-\dfrac{3}{2}=m\)
Phương trình có nghiệm khi và chỉ khi:
\(\dfrac{-\sqrt{13}-3}{2}\le m\le\dfrac{\sqrt{13}-3}{2}\)
Lý thuyết đồ thị:
Phương trình \(f\left(x\right)=m\) có nghiệm khi và chỉ khi \(f\left(x\right)_{min}\le m\le f\left(x\right)_{max}\)
Hoặc sử dụng điều kiện có nghiệm của pt lương giác bậc nhất (tùy bạn)
a.
\(\dfrac{\sqrt{3}}{2}\left(1-cos2x\right)+\dfrac{1}{2}sin2x=m\)
\(\Leftrightarrow\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x+\dfrac{\sqrt{3}}{2}=m\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)+\dfrac{\sqrt{3}}{2}=m\)
\(\Rightarrow\) Pt có nghiệm khi và chỉ khi:
\(-1+\dfrac{\sqrt{3}}{2}\le m\le1+\dfrac{\sqrt{3}}{2}\)
c.
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos2x+\left(m-1\right)sin2x-\left(m+1\right)\left(\dfrac{1}{2}+\dfrac{1}{2}cos2x\right)=m\)
\(\Leftrightarrow\left(2m-2\right)sin2x-\left(m+2\right)cos2x=3m\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất, pt có nghiệm khi:
\(\left(2m-2\right)^2+\left(m+2\right)^2\ge9m^2\)
\(\Leftrightarrow m^2+m-2\le0\)
\(\Leftrightarrow-2\le m\le\)
1. Tìm m để PT có nghiệm:
a) \(\sqrt{3}\cos^2x+\dfrac{1}{2}\sin2x=m\)
b) \(3\sin^2x-2\sin x\cos x+m=0\)
c) \(^{ }\sin^2x+2\left(m-1\right)\sin x\cos x-\left(m+1\right)\cos^2x=m\)
a) \(\sqrt{3}\left(\dfrac{1+cos2x}{2}\right)+\dfrac{1}{2}sin2x=m\) ↔ \(\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x=m-\dfrac{\sqrt{3}}{2}\)
→\(\sqrt{3}cos2x+sin2x=2m-\sqrt{3}\) ↔ \(2cos\left(\dfrac{\pi}{6}-2x\right)=2m-\sqrt{3}\)
→\(cos\left(\dfrac{\pi}{6}-2x\right)=m-\dfrac{\sqrt{3}}{2}\)
Pt có nghiệm khi và chỉ khi \(-1\le m-\dfrac{\sqrt{3}}{2}\le1\)
b) \(\left(3+m\right)sin^2x-2sinx.cosx+mcos^2x=0\)
cosx=0→ sinx=0=> vô lý
→ sinx#0 chia cả 2 vế của pt cho cos2x ta đc:
\(\left(3+m\right)tan^2x-2tanx+m=0\)
pt có nghiệm ⇔ △' ≥0
Tự giải phần sau
c) \(\left(1-m\right)sin^2x+2\left(m-1\right)sinx.cosx-\left(2m+1\right)cos^2x=0\)
⇔cosx=0→sinx=0→ vô lý
⇒ cosx#0 chia cả 2 vế pt cho cos2x
\(\left(1-m\right)tan^2x+2\left(m-1\right)tanx-\left(2m+1\right)=0\)
pt có nghiệm khi và chỉ khi △' ≥ 0
Tự giải
giải phương trình
a, \(2\sin\frac{x}{2}\left(\sin\frac{3x}{2}+\cos\frac{3x}{2}\right)=3-4\cos x\)
b, \(\frac{2\cos^2x+\sqrt{3}\sin2x+3}{2\cos^2x.\sin\left(x+\frac{\pi}{3}\right)}=3\left(\tan^2x+1\right)\)
a/ \(cosx-cos2x+sin2x-sinx=3-4cosx\)
\(\Leftrightarrow2sinx.cosx-sinx-2cos^2x+5cosx-2=0\)
\(\Leftrightarrow sinx\left(2cosx-1\right)-\left(2cosx-1\right)\left(cosx-2\right)=0\)
\(\Leftrightarrow\left(2cosx-1\right)\left(sinx-cosx+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2cosx-1=0\\sinx-cosx=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\sin\left(x-\frac{\pi}{4}\right)=-\sqrt{2}< -1\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{\pi}{3}+k2\pi\)
b/ ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\sin\left(x+\frac{\pi}{3}\right)\ne0\end{matrix}\right.\) \(\Rightarrow...\)
\(\frac{2cos^2x+\sqrt{3}sin2x+3}{2cos^2x.sin\left(x+\frac{\pi}{3}\right)}=\frac{3}{cos^2x}\)
\(\Leftrightarrow2cos^2x+2\sqrt{3}sinx.cosx+3=3\left(sinx+\sqrt{3}cosx\right)\)
\(\Leftrightarrow2cos^2x-3\sqrt{3}cosx+3+2\sqrt{3}sinx.cosx-3sinx=0\)
\(\Leftrightarrow\left(2cosx-\sqrt{3}\right)\left(cosx-\sqrt{3}\right)+\sqrt{3}sinx\left(2cosx-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left(2cosx-\sqrt{3}\right)\left(cosx+\sqrt{3}sinx-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{3}}{2}\\sin\left(x+\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}\end{matrix}\right.\) \(\Rightarrow...\)
a/\(\sin3x+\cos2x=1+2\sin x\cos2x\)
b/\(\sin^3x+\cos^3x=2\left(\sin^5x+\cos^5x\right)\)
c/\(\dfrac{\tan x}{\sin x}-\dfrac{\sin x}{\cos x}=\dfrac{\sqrt{2}}{2}\)
d/\(\dfrac{\cos x\left(\cos x+2\sin x\right)+3\sin x\left(\sin x+\sqrt{2}\right)}{\sin2x-1}=1\)
e/\(\sin^2x+\sin^23x-2\cos^22x=0\)
f/\(\dfrac{\tan x-\sin x}{\sin^3x}=\dfrac{1}{\cos x}\)
g/\(\sin2x\left(\cos x+\tan2x\right)=4\cos^2x\)
h/\(\sin^2x+\sin^23x=\cos^2x+\cos^23x\)
k/\(4\sin2x=\dfrac{\cos^2x-\sin^2x}{\cos^6x+\sin^6x}\)
mọi người giải giúp em với em đang cần gấp ạ
giải pt : \(\frac{\left(2\sin x-1\right)\left(\cos2x+\sin x+1\right)}{\sqrt{3}\sin x-\sin2x}=\sqrt{3}+2\cos x\)
\(\frac{\sin2x\left(2\cos x-1\right)+2\left(\sin x-1\right)}{\sqrt{2\sin x-1}}=\sqrt{2\sin x-1}\)
1. CM:
\(\dfrac{1}{2}\le\dfrac{\sin x+2\cos x+3}{2\sin x\cos x+3}\le2\)
2. Giải PT:
a) \(\dfrac{1}{\cos x}=4\sin x+6\cos x\)
b) \(\sin^3\left(x-\dfrac{\pi}{4}\right)=\sqrt{2}\sin x\)
c) \(\dfrac{1}{\cos x}+\dfrac{1}{\sin2x}=\dfrac{2}{\sin4x}\)
1.
Kiểm tra lại đề bài, câu này phải là \(\dfrac{sinx+2cosx+3}{2sinx+cosx+3}\) mới đúng
2.a
ĐKXĐ: \(cosx\ne0\)
\(\Leftrightarrow\dfrac{1}{cos^2x}=4tanx+6\)
\(\Leftrightarrow1+tan^2x=4tanx+6\)
\(\Leftrightarrow tan^2x-4tanx-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(5\right)+k\pi\end{matrix}\right.\)
2b.
Đặt \(x-\dfrac{\pi}{4}=t\Rightarrow x=t+\dfrac{\pi}{4}\)
\(sin^3t=\sqrt{2}sin\left(t+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow sin^3t=sint+cost\)
\(\Leftrightarrow sint\left(1-cos^2t\right)=sint+cost\)
\(\Leftrightarrow sint.cos^2t+cost=0\)
\(\Leftrightarrow cost\left(sint.cost+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cost=0\\sin2t=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=0\\sin\left(2x-\dfrac{\pi}{2}\right)=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
2c.
ĐKXĐ: \(sin4x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{4}\)
\(\dfrac{4sinx.cos2x}{sin4x}+\dfrac{2cos2x}{sin4x}=\dfrac{2}{sin4x}\)
\(\Leftrightarrow2sinx.cos2x+cos2x=1\)
\(\Leftrightarrow2sinx.cos2x+1-2sin^2x=1\)
\(\Leftrightarrow sinx\left(cos2x-sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(loại\right)\\cos2x-sinx=0\end{matrix}\right.\)
\(\Leftrightarrow1-2sin^2x-sinx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\left(loại\right)\\sinx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+k2\pi\)
Giaỉ các phương trình lượng giác sau:
1. sin(sinx)=0
2. sin(cosx)=0
3. \(\sqrt{3}\sin-\cos x=2cos3x\)
4. \(\sin2x=sin\left(2x-\dfrac{\pi}{2}\right)\)
5. \(4\cos\left(3\pi-2x\right)=\sqrt{2}\)
3.
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=cos3x\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{2}-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{2}-3x+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+3x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{2}\\x=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
câu 2 mình sửa lại đề bài một chút là: sin(cosx)=1 ạ
1.
\(sin\left(sinx\right)=0\)
\(\Leftrightarrow sinx=k\pi\) (1)
Do \(-1\le sinx\le1\Rightarrow-1\le k\pi\le1\)
\(\Rightarrow-\dfrac{1}{\pi}\le k\le\dfrac{1}{\pi}\Rightarrow k=0\) do \(k\in Z\)
Thế vào (1)
\(\Rightarrow sinx=0\Rightarrow x=n\pi\)
2.
\(sin\left(cosx\right)=1\Leftrightarrow cosx=\dfrac{\pi}{2}+k2\pi\)
Do \(-1\le cosx\le1\Rightarrow-1\le\dfrac{\pi}{2}+k2\pi\le1\)
\(\Rightarrow-\dfrac{1}{2\pi}-\dfrac{1}{4}\le k\le\dfrac{1}{2\pi}-\dfrac{1}{4}\)
\(\Rightarrow\) Không tồn tại k thỏa mãn
Pt vô nghiệm