giải phương trình:
\(\frac{\cos x\left(\cos x+2\sin x\right)+3\sin x\left(\sin x+\sqrt{2}\right)}{2\sin x-1}=1\)
Chứng minh rằng: (Pls help me)
a, \(\frac{1}{\sin x}+\cot x=\cot\frac{x}{2}\)
b, \(\frac{1-\cos x}{\sin x}=\tan\frac{x}{2}\)
c,\(\tan\frac{x}{2}\left(\frac{1}{\cos x}+1\right)=\tan x\)
d,\(\frac{\sin2a}{2\cos a\left(1+\cos a\right)}=\tan\frac{a}{2}\)
e,\(\cot x+\tan\frac{x}{2}=\frac{1}{\sin x}\)
f,\(3-4\cos2x+\cos4x=8\sin^4x\)
g,\(\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}\)
h,\(\sin x+\cos x=\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)\)
i,\(\sin x-\cos x=\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)\)
l,\(\cos x-\sin x=\sqrt{2}\cos\left(x+\frac{\pi}{4}\right)\)
Rút gọn các biểu thức sau
1, \(\dfrac{1+\cot x}{1-\cot x}-\dfrac{2+2\cot^2x}{\left(\tan x-1\right)\left(\tan^2x+1\right)}\)
2, \(\sqrt{\sin^4x+6\cos^2x+3\cos^4x}+\sqrt{\cos^4x+6\sin^2x+3\sin^4x}\)
Chứng minh đẳng thức sau :
1) \(sin^2\left(\frac{\pi}{8}+x\right)-sin^2\left(\frac{\pi}{8}-x\right)=\frac{\sqrt{2}}{2}sin2x\)
2) \(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=tanx\)
\(\sqrt{\sin^4x+4\cos^2x}+\sqrt{\cos^4x+4\sin^2x}\)
=\(\sqrt{\left(1-cos^2x\right)^2+4\cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4\sin^2x}\)
=\(\sqrt{\cos^4x-2\cos^2x+1+4\cos^2x}+\sqrt{\sin^4x-2\sin^2x+1+4\sin^2x}\)
=\(\sqrt{\cos^4x+2\cos^2x+1}+\sqrt{\sin^4x+2\sin^2x+1}\)
=\(\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)
=\(cos^2x+1+sin^2x+1=3\)
chứng minh rằng
1) \(tanx=\frac{1-cos2x}{sin2x}\)
2)\(\frac{sin\left(60^0-x\right).cos\left(30^{0^{ }}-x\right)+cos\left(60^{0^{ }}-x\right).sin\left(30^{0^{ }}-x\right)}{sin4x}=\frac{1}{2sin2x}\)
3) \(4cos\left(60^0+a\right).cos\left(60^0-a\right)+2sin^2a=cos2a\)
Cho \(sin\left(x\right)+cos\left(x\right)=\dfrac{\sqrt{2}}{2}\).Trong kết quả sau đây kết quả nào sai
A.\(sin\left(x\right).cos\left(x\right)=\dfrac{-1}{4}\) B. \(sin\left(x\right)-cos\left(x\right)=\pm\dfrac{\sqrt{6}}{2}\)
C.\(sin\left(x\right)^4+cos\left(x\right)^4=\dfrac{7}{8}\) D.\(tan\left(x\right)^2+cot\left(x\right)^2=12\)
giúp mình cả cách bấm máy tính luôn
Rút gọn biểu thức
\(\frac{1+\cos x}{\sin x}\left(1-\frac{\left(1-\cos x\right)^2}{\sin^2x}\right)\)
Chứng minh đẳng thức lượng giác:
\(\frac{2sin^2\frac{x}{2}+sin2x-1}{2sinx-1}+sinx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)