x,y,z>0
Tìm Min P=\(\frac{x^2}{y^2+yz+z^2}+\frac{y^2}{z^2+xz+x^2}+\frac{z^2}{x^2+xy+y^2}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+xy+yz}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
cm biết x y z >0
#)Góp ý :
Mời bạn tham khảo :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Mình sẽ gửi link này về chat riêng cho bạn !
Tham khảo qua đây nè :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017
tk cho mk nhé
Cho các số thực dương x,y,z t/m xy+yz+xz=1
Tìm min của \(P=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
\(P\ge\frac{x+y+z}{2}=\frac{\sqrt{\left(x+y+z\right)^2}}{2}\ge\frac{\sqrt{3\left(xy+yz+zx\right)}}{2}=\frac{\sqrt{3}}{2}\)
\("="\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
cho x,y,z >0 và x+y+z=3 .tìm min của
A= \(x^2+y^2+z^3\)
B= \(\frac{x}{y^3+xy}+\frac{y}{z^3+yz}+\frac{z}{x^3+xz}\)
C= \(\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
Cho x,y,z>0, x>y : xy+yz+xz+z2=1
Tìm Min:
\(P=\frac{1}{4\left(x-y\right)^2}+\frac{1}{\left(x+z\right)^2}+\frac{1}{\left(y+z\right)^2}\)
Cho các số dương x, y, z. CMR:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)
\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)
Thiết lập tương tự và cộng lại:
\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)
\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)
Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)
\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)
\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)
Dấu "=" xảy ra khi \(x=y=z\)
Cho các số dương x,y,z . Chứng minh rằng:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
cho x,y,z khác 0 và x+y+z=0
chứng minh rằng
\(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{x^2+z^2}{x+z}=\frac{x^3}{yz}+\frac{y^3}{xz}+\frac{z^3}{xy}\)
Cho các số dương x, y, z. CMR:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+xz+xy}\ge\frac{x^2+y^2+z^2}{xy+yz+xz}\)
BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)
Cho x,y,z > 0 xy + yz +xz=1 tìm min của
\(\frac{1}{x^4-yz+2}\)+\(\frac{1}{y^4-xz+2}\)+ \(\frac{1}{z^4-xy+2}\)