+) \(P=\frac{x^2}{y^2+yz+z^2}+\frac{y^2}{x^2+xz+z^2}+\frac{z^2}{x^2+xy+y^2}\)
\(\ge\text{Σ}\frac{x^2}{y^2+\frac{y^2+z^2}{2}+z^2}=\frac{2}{3}\text{Σ}\frac{x^2}{y^2+z^2}\)
+) Đặt \(a=x^2;b=y^2;c=z^2\)
Ta có: \(A=\text{Σ}\frac{x^2}{y^2+z^2}=\text{Σ}\frac{a}{b+c}=\text{Σ}\frac{a^2}{ab+ac}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\frac{3}{2}\)(BDT Nesbitt)
Vậy \(P=\frac{2}{3}A\ge1\)
Dấu = xảy ra khi x = y = z