Những câu hỏi liên quan
H24
Xem chi tiết
NA
Xem chi tiết
NL
13 tháng 8 2021 lúc 1:19

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

Bình luận (0)
H24
Xem chi tiết
TH
8 tháng 3 2021 lúc 22:03

Mk ms tìm được GTNN thôi!

Ta có: A = a3 + b3 = (a + b)(a2 + b2 - ab) = (a + b)(1 - ab)

Áp dụng BĐT Cô-si cho 2 số ko âm a2 và b2 ta có:

a2 + b2 \(\ge\) 2ab

\(\Leftrightarrow\) 1 \(\ge\) 2ab

\(\Leftrightarrow\) 1 - 2ab \(\ge\) 0

\(\Leftrightarrow\) 1 - ab \(\ge\) ab

\(\Rightarrow\) A \(\ge\) ab(a + b)

Dấu "=" xảy ra khi và chỉ khi a = b = \(\sqrt{0,5}\)

\(\Rightarrow\) A \(\ge\) 0,5 . 2\(\sqrt{0,5}\) = \(\sqrt{0,5}\)

Vậy ...

Chúc bn học tốt!

Bình luận (0)
NL
8 tháng 3 2021 lúc 23:18

\(a^2+b^2=1\Rightarrow\left\{{}\begin{matrix}0\le a\le1\\0\le b\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a^3\le a^2\\b^3\le b^2\end{matrix}\right.\)

\(\Rightarrow a^3+b^3\le a^2+b^2=1\)

\(A_{max}=1\) khi \(\left(a;b\right)=\left(0;1\right);\left(1;0\right)\)

\(a^3+a^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}a^2\)

\(b^3+b^3+\left(\dfrac{1}{\sqrt{2}}\right)^3\ge\dfrac{3}{\sqrt{2}}b^2\)

Cộng vế:

\(2\left(a^3+b^3\right)+\dfrac{\sqrt{2}}{2}\ge\dfrac{3}{\sqrt{2}}\left(a^2+b^2\right)=\dfrac{3\sqrt{2}}{2}\)

\(\Rightarrow a^3+b^3\ge\dfrac{\sqrt{2}}{2}\)

\(A_{min}=\dfrac{\sqrt{2}}{2}\) khi \(a=b=\dfrac{\sqrt{2}}{2}\)

Bình luận (0)
TH
8 tháng 3 2021 lúc 22:17

Ta có: A = a3 + b3 = (a + b)(a2 + b2 - ab) = (a + b)(1 - ab)

Áp dụng BĐT Cô-si cho 2 số (a + b)2 và 1 ko âm ta có:

\(\dfrac{\left(a+b\right)^2+1}{2}\ge a+b\)

\(\Leftrightarrow\) \(\dfrac{a^2+b^2+2ab+1}{2}\ge a+b\)

\(\Leftrightarrow\) \(\dfrac{2+2ab}{2}\ge a+b\)

\(\Leftrightarrow\) 1 + ab \(\ge\) a + b

\(\Leftrightarrow\) (1 - ab)(1 + ab) \(\ge\) A

\(\Leftrightarrow\) 1 - a2b2 \(\ge\) A

Dấu "=" xảy ra \(\Leftrightarrow\) ab = 1; a2 + b2 = 1

Khi đó: A \(\le\) 0

Vậy ...

Chúc bn học tốt!

Bình luận (1)
KH
Xem chi tiết
LH
7 tháng 6 2021 lúc 17:23

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

Bình luận (0)
SK
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
CT
9 tháng 12 2017 lúc 2:06

Đáp án B

Ta có

f ' x = 3 x + a 2 + x + b 2 − x 2 = 3 x 2 + 2 a + b x + a 2 + b 2

Để hàm số luôn đồng biến trên − ∞ ; + ∞

thì Δ ' = a + b 2 − a 2 + b 2 ≤ 0 ⇔ a b ≤ 0

Ta có  

P = a 2 + b 2 − 4 a − 4 b + 2 = a + b − 2 2 − 2 a b − 2 ≥ − 2.

Dâu bằng xảy ra khi a + b = 2 a b = 0 ⇔ a = 2 b = 0  hoặc ngược lại.

Bình luận (0)
PB
Xem chi tiết
CT
19 tháng 5 2018 lúc 17:27

Đáp án B

Ta có: f ' x = − 3 x 2 + 3 x + a 2 + 3 x + b 2 = 3 x 2 + 6 a + b x + 3 a 2 + 3 b 2  

Để hàm số đồng biến trên − ∞ ; + ∞  thì f ' x ≥ 0 ∀ x ∈ − ∞ ; + ∞  

⇔ 3 x 2 + 6 a + b x + 3 a 2 + 3 b 2 ≥ 0 ∀ x ∈ ℝ ⇔ x 2 + 2 a + b x + a 2 + b 2 ≥ 0 ∀ x ∈ ℝ ⇔ Δ ' = a + b 2 − a 2 + b 2 ≤ 0 ⇔ 2 a b ≤ 0 ⇔ a b ≤ 0  

TH1:   b = 0 ⇒ P = a 2 − 4 a + 2 = a − 2 2 − 2 ≥ − 2 1

TH2: a > 0 , b < 0 ⇒ P = a − 2 2 + b 2 + − 4 b − 2 > − 2 2  

Từ (1) và (2) ⇒ P min = − 2   k h i   a = 0  hoặc b = 0.

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 4 2019 lúc 3:05

Chọn C.

Ta có a2 + b2 = 14ab  nên (a + b)2 = 16ab hay 

+ Nên ta có  vậy A đúng

+ 2log2( a + b) = log2 (a + b) 2= log2( 16ab) = 4 + log2a + log2b.

vậy B đúng

+ 2log4(a + b) = log4( a + b)2= log4(16ab) = 2 + log4a + log4b . vậy C sai

+  vậy D đúng.

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 7 2018 lúc 7:16

Đáp án B

3 a = 5 b = 1 3 c 5 c ⇔ a log 3 15 = b log 3 15 = - c log 15 15 ⇔ a 1 + log 3 5 = b 1 + log 5 3 = - c

Đặt  t = log 3 5 ⇒ a = - c 1 + t b = - c 1 + 1 t = a t ⇒ a = - c 1 + a b ⇔ a b + b c + c a = 0

⇒ P = a + b + c 2 - 4 a + b + c ≥ - 4 . Dấu bằng khi a + b + c = 2 a b + b c + c a = 0 , chẳng hạn a = 2,b = c = 0.

Bình luận (0)