Chứng tỏ rằng:
2+22+23+24+...+289+290 chia hết cho 3 và chia hết cho 7
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 6 đề 1
Cho : A = 21 + 22 + 23 + 24 + 25 + ... + 290
a) Chứng tỏ A chia hết cho 7
b) Tính A
Số số hạng của A:
90 - 1 + 1 = 90 (số)
Do 90 chia hết cho 3 nên có thể nhóm thành nhóm 3 số hạng
Ta có:
A = 2¹ + 2² + 2³ + ... + 2⁹⁰
= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁸⁸ + 2⁸⁹ + 2⁹⁰)
= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁸⁸.(1 + 2 + 2²)
= 2.7 + 2⁴.7 + ... + 2⁸⁸.7
= 7.(2 + 2⁴ + ... + 2⁸⁸) ⋮ 7
Vậy A ⋮ 7
b) A = 2¹ + 2² + 2³ + ... + 2⁹⁰
⇒ 2A = 2² + 2³ + 2⁴ + ... + 2⁹¹
⇒ A = 2A - A = (2² + 2³ + 2⁴ + ... + 2⁹¹) - (2 + 2² + 2³ + ... + 2⁹⁰)
= 2⁹¹ - 2
A = 21+ 22+ 23+ 24+ 25+ …+ 290
Chứng tỏ A chia hết cho 7
Số số hạng:
(290-21):1+1=270( số hạng)
Tổng A:(290+21) x 270:2=41985
Ta có:41986:7 hết nén A chia hết cho 7.
chứng tỏ rằng : A = 2 + 22+23+24+......+299 + 91 CHIA HẾT cho 7
Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}+91\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)+91\)
\(=2\cdot\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)+91\)
\(=7\cdot\left(1+2^4+...+2^{97}\right)+7\cdot13\)
\(=7\cdot\left(1+2^4+...+2^{97}+13\right)⋮7\)(đpcm)
chứng tỏ rằng : A = 2 + 22+23+24+......+299 + 91 CHIA HẾT cho 7
Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)
\(=2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{97}\right)\)
\(=7\cdot\left(2+2^4+...+2^{97}\right)⋮7\)(đpcm)
Câu 6: Chứng tỏ A = 2 + 22 + 23 + 24….+ 259 + 260
a. Chia hết cho 3;
b. Chia hết cho 7.
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7 chia hết cho 7 =>7.(2+...+258) chia hết cho 7
CHIA HẾT CHO 3 :
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
Cho S = 1+2+22+23+24+...+2299
Chứng tỏ rằng : a, S chia hết cho 3
b, S chia hết cho 7
c,S chia hết cho 15
GIẢI GIÚP MIK VS
Cho A = 2 + 22 + 23 + 24 +... + 219 + 220. Chứng tỏ rằng A chia hết cho 3
A = 2 + 22 + 23 + 24 + ... + 219 + 220
A = (2 + 22) + (23 + 24) +... + (219 + 220)
A = 2.(1+2) + 23.(1 + 2) +... + 219.(l + 2)
A = 2.3 + 23.3 +...+ 219.3 Do đó A chia hết cho 3
do đó A chia hết cho 3
cho A= 2+22+23+24+.......+223 +224 . chứng tỏ rằng A chia hết cho 7
A = 2 + 22 + 23 + 24 + 25..... + 223 + 224
= (2 + 22 + 23) + (23 + 24 + 25) + ..... + (222 + 223 + 224)
= (2 + 22 + 23) + 22 (2 + 22 + 23) + .... + 222. (2 + 22 + 23)
= 14 + 22.14 + .... + 222.14
= 14.(1 + 22 + ... + 222)
= 2.7.(1 + 22 + ... + 222) \(⋮\) 7
\(\Rightarrow A⋮7\)(ĐPCM)
Chứng minh
A = 1 + 2 + 22 + 23 + 24 +…+ 219 + 220.chứng tỏ rằng A chia hết cho 3
kết hợp theo công thức thì số kết thúc phải là 219 hoặc là 221 mới kết hợp được
Đừng có đánh giá người khác như thế chứ ;-;
Chứng minh A = 1 + 2 + 22 + 23 + 24 +…+ 219 + 220.chứng tỏ rằng A chia hết cho 3
A=\((1+2)+\left(2^2+2^3\right)+...+\left(2^{19}+2^{20}\right)\)
A=\(3.1+2^2\left(1+2\right)+...+2^{19}\left(1+2\right)\)
A=\(3.1+3.2^2+...+3.2^{19}\)
A=\(3\left(1+2^2+...+2^{19}\right)\)\(⋮3\)
Vậy A\(⋮3\)
A=(1+2)+(22+23)+...+(219+220)(1+2)+(22+23)+...+(219+220)
A=3.1+22(1+2)+...+219(1+2)3.1+22(1+2)+...+219(1+2)
A=3.1+3.22+...+3.2193.1+3.22+...+3.219
A=3(1+22+...+219)3(1+22+...+219)⋮3⋮3
NÊN A⋮3