Những câu hỏi liên quan
PH
Xem chi tiết
PL
1 tháng 6 2018 lúc 16:37

Violympic toán 8

Bình luận (13)
TL
2 tháng 6 2018 lúc 9:16

\(S=\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\\ =\sqrt{a^2+2ab+b^2-3ab}+\sqrt{b^2+2bc+c^2-3bc}+\sqrt{c^2+2ca+a^2-3ca}\\ =\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot4ab}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\cdot4bc}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\cdot4ca}\)

Áp dụng BDT : Cô-si:

\(\Rightarrow S=\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot4ab}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\cdot4bc}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\cdot4ca}\\ \ge\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot\left(a+b\right)^2}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\left(b+c\right)^2}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\left(c+a\right)^2}\\ =\sqrt{\dfrac{1}{4}\left(a+b\right)^2}+\sqrt{\dfrac{1}{4}\left(b+c\right)^2}+\sqrt{\dfrac{1}{4}\left(c+a\right)^2}\\ =\dfrac{1}{2}\left(a+b\right)+\dfrac{1}{2}\left(b+c\right)+\dfrac{1}{2}\left(c+a\right)\\ =\dfrac{1}{2}\left(a+b+b+c+c+a\right)\\ =a+b+c\\ =2019\)

Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}a=b=c\\a+b+c=2019\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=673\\b=673\\c=673\end{matrix}\right.\)

Vậy \(S_{Min}=2019\) khi \(a=b=c=673\)

Bình luận (2)
ND
1 tháng 6 2018 lúc 16:33

cái cuối là dấu "+" à?

Bình luận (3)
H24
Xem chi tiết
NL
30 tháng 8 2021 lúc 20:11

\(a^2+ab+b^2=\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\dfrac{\sqrt{3}}{2}\left(a+b\right)\)

Tương tự và cộng lại:

\(P\ge\sqrt{3}\left(a+b+c\right)=\sqrt{3}\)

\(P_{min}=\sqrt{3}\) khi \(a=b=c=\dfrac{1}{3}\)

Bình luận (0)
NT
Xem chi tiết
NL
10 tháng 5 2019 lúc 16:50

\(Q=\sum\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{1}{2}\sum\left(a+b\right)=a+b+c=2019\)

\(\Rightarrow Q_{min}=2019\) khi \(a=b=c=\frac{2019}{3}\)

Bình luận (2)
TN
Xem chi tiết
TH
27 tháng 4 2023 lúc 21:41

Với \(ab+bc+ca=1\) và a,b,c>0 ta có:

\(\left\{{}\begin{matrix}\sqrt{a^2+1}=\sqrt{\left(a+b\right)\left(c+a\right)}\\\sqrt{b^2+1}=\sqrt{\left(b+c\right)\left(a+b\right)}\\\sqrt{c^2+1}=\sqrt{\left(c+a\right)\left(b+c\right)}\end{matrix}\right.\). Do đó:

\(\dfrac{\sqrt{a^2+1}.\sqrt{b^2+1}}{\sqrt{c^2+1}}=a+b\)

Tương tự: \(\dfrac{\sqrt{b^2+1}.\sqrt{c^2+1}}{\sqrt{a^2+1}}=b+c\) ; \(\dfrac{\sqrt{c^2+1}.\sqrt{a^2+1}}{\sqrt{b^2+1}}=c+a\)

\(\Rightarrow P=2\left(a+b+c\right)\)

\(\Rightarrow P^2=4\left(a+b+c\right)^2\ge4.3\left(ab+bc+ca\right)=4.3.1=12\)

\(\Rightarrow P\ge2\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\)

Vậy \(MinP=2\sqrt{3}\)

Bình luận (0)
NH
Xem chi tiết
H24
25 tháng 10 2019 lúc 8:58

Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D

Bình luận (0)
 Khách vãng lai đã xóa
KT
30 tháng 6 2020 lúc 17:11

Mấy bạn ơi , cho tớ hỏi:

Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?

Ai trả lời nhanh mình tích cho.
 

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
CC
9 tháng 5 2018 lúc 15:01

hình như bạn ghi sai ồi 

Bình luận (0)
H24
30 tháng 6 2020 lúc 7:55

\(S=\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)\Leftrightarrow4a^2-4ab+4b^2\ge a^2+2ab+b^2\Leftrightarrow3\left(a-b\right)^2\ge0\)

do đó: \(S\ge\frac{1}{2}a+\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}c=2019\)

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
NL
13 tháng 8 2021 lúc 15:10

\(a^2+ab+b^2=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)

Tương tự, ta có:

\(M\ge\dfrac{\sqrt{3}}{2}\left(a+b\right)+\dfrac{\sqrt{3}}{2}\left(b+c\right)+\dfrac{\sqrt{3}}{2}\left(c+a\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
AX
Xem chi tiết
HG
Xem chi tiết
AN
12 tháng 11 2016 lúc 16:17

a/ Nếu (a + b) < 0 thì bất  đẳng thức đúng

Với (a + b) \(\ge0\)thì ta có

\(2a^2+ab+2b^2\ge\frac{5}{4}\left(a^2+2ab+b^2\right)\)

\(\Leftrightarrow3a^2-6ab+3b^2\ge0\)

\(\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)

Bình luận (0)
HN
12 tháng 11 2016 lúc 17:30

b/ Áp dụng BĐT BCS : 

\(1=\left(1.\sqrt{a}+1.\sqrt{b}+1.\sqrt{c}\right)^2\le3\left(a+b+c\right)\Rightarrow a+b+c\ge\frac{1}{3}\)

Áp dụng câu a/ :

\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)

\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)

\(\sqrt{2c^2+ac+2a^2}\ge\frac{\sqrt{5}}{2}\left(a+c\right)\)

\(\Rightarrow P\ge\frac{\sqrt{5}}{2}.2\left(a+b+c\right)\ge\frac{\sqrt{5}}{3}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{9}\)

Vậy min P = \(\frac{\sqrt{5}}{3}\) khi a=b=c=1/9

Bình luận (0)