Những câu hỏi liên quan
PG
Xem chi tiết
NT
10 tháng 7 2020 lúc 14:40

a)đặt t=\(\sqrt{2x-3}\)

=>P=x-2t

=>t=\(\frac{x-P}{2}\)

Bình luận (0)
TT
Xem chi tiết
IS
29 tháng 6 2020 lúc 15:31

 \(t=\sqrt{2x-3}=>\frac{t^2+3}{2}=x\)

\(=>P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}=\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\)

ta có \(\frac{\left(t-2\right)^2}{2}\ge0\left(\forall t\right)\)

\(=>\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\ge-\frac{1}{2}\left(\forall t\right)\)

minP=-1/2

dấu = xảy ra khi x=7/2

Bình luận (0)
 Khách vãng lai đã xóa
NC
29 tháng 6 2020 lúc 15:32

a) \(t=\sqrt{2x-3}\ge0\)

<=> \(t^2=2x-3\)

<=> \(x=\frac{t^2+3}{2}\)

=> \(P=\frac{t^2+3}{2}-2t\)

b) khi đó: \(P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}\ge-\frac{1}{2}\)

Dấu "=" xảy ra <=> t = 2  khi đó: x = 7/2

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
IT
8 tháng 7 2021 lúc 14:37

a.

\(y=\sqrt{x+2}\Rightarrow y^2=\left(\sqrt{x+2}\right)^2\)

                    \(\Rightarrow y^2=x+2\)

                    \(\Rightarrow x=y^2-2\)

thay vào A ta có:\(A=x-2\sqrt{x+2}\)

\(\Rightarrow A=y^2-2y=y^2-2y-2\)

b.

\(A=x-2\sqrt{x+2}\)

Điều kiện:x+2≥0⇔x>-2

ta có:\(A=x-2\sqrt{x+2}\)

            \(=\left(x+2\right)-2\sqrt{x+2}.1+1-3\)

            \(=\left(\sqrt{x+12}-1\right)^2-3\)

vì \(\left(\sqrt{x+2}-1\right)^2\ge0\forall x\)

\(\Rightarrow\left(\sqrt{x+2}-1\right)^2-3\ge-3\forall x\)

vậy GTNN của A là-3

Bình luận (0)
QL
8 tháng 7 2021 lúc 14:47

a/ y=\(\sqrt{x+2}\)\(y^2-2=x\)

⇒A=\(y^2-2-2y\)

b/ A=\(y^2-2y-2\)=\(\left(y^2-2y+1\right)-3\)=\(\left(y-1\right)^2-3\)≥ -3

\(A_{min}=-3\)

dấu = xảy ra khi y=1⇒x= -1

Bình luận (0)
VN
Xem chi tiết
TV
Xem chi tiết
HT
Xem chi tiết
NT
10 tháng 5 2023 lúc 7:50

a: \(\dfrac{2x-2}{3}>=\dfrac{x+3}{6}\)

=>4x-4>=x+3

=>3x>=7

=>x>=7/3

b: (x+3)^2<(x-2)^2

=>6x+9<4x-4

=>2x<-13

=>x<-13/2

c: \(\dfrac{2x-3}{3}-x< =\dfrac{2x-3}{5}\)

=>2/3x-1-x<=2/5x-3/5

=>-11/15x<2/5

=>x>-6/11

Bình luận (0)
TH
Xem chi tiết
NN
27 tháng 5 2017 lúc 9:44

Bài 1:

a)

*) Xét \(x< 0,5\)

\(\Rightarrow\left|x-1\right|+\left|2x-1\right|+\left|x-2\right|=1-x+1-2x+2-x=4-4x\)

Do \(x< 0,5\Leftrightarrow4x< 2\Leftrightarrow-4x>-2\Leftrightarrow4-4x>-2+4\Leftrightarrow4-4x>2~~~~~~~~\left(1\right)\)

*) Xét \(0,5\le x\le1\).

\(\Rightarrow\left|x-1\right|+\left|2x-1\right|+\left|x-2\right|=1-x+2x-1+2-x=2~~~~~~~~\left(2\right)\)

*) Xét \(1< x< 2\)

\(\Rightarrow\left|x-1\right|+\left|2x-1\right|+\left|x-2\right|=x-1+2x-1+2-x=2x\)

Do \(1< x< 2\Leftrightarrow2< 2x< 4~~~~~~~\left(3\right)\)

*) Xét \(2\le x\)

\(\Rightarrow\left|x-1\right|+\left|2x-1\right|+\left|x-2\right|=x-1+2x-1+x-2=4x-4\)

Do \(2\le x\Rightarrow4x\ge8\Rightarrow4x-4\ge4~~~~~~~~~\left(4\right)\)

Từ (1);(2);(3):(4) \(\Rightarrow_{min}A=2\)khi \(0,5\le x\le1\)

b) Mình nghĩ đề nên là \(\left(2x-1\right)^2-6\left|2x-1\right|+5\)

c) \(C=\left(2x-1\right)^2-3\left|2x-1\right|+2\)

Đặt \(\left|2x-1\right|=y\)

Ta có: \(C=\left(2x-1\right)^2-3\left|2x-1\right|+2=\left|2x-1\right|^2-3\left|2x-1\right|+2=y^2-3y+2\)

\(=\left(y^2-3y+2,25\right)-0,25=\left(y-1,5\right)^2-0,25\ge-0,25\)

Dấu "=" xảy ra khi \(y=1,5\)

\(\Rightarrow\left|2x-1\right|=1,5\Leftrightarrow\)\(\left[{}\begin{matrix}2x-1=1,5\\2x-1=-1,5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1,25\\x=-0,25\end{matrix}\right.\)

Vậy \(_{min}C=-0,25\) khi \(x=1,25\) hoặc \(x=-0,25\)

d)

Ta có: \(x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2++\dfrac{3}{4}>0\)

\(\Rightarrow D=x^2+x+1+\left|x^2+x-12\right|=x^2+x+1+\left|12-x^2-x\right|\ge x^2+x+1+12-x^2-x=13\)Dấu"=" xảy ra khi:

\(12-x^2-x\ge0\Rightarrow\left(x+4\right)\left(x-3\right)\ge0\)

Do \(x+4>x-3\Rightarrow\left\{{}\begin{matrix}x+4\ge0\\x-3\le0\end{matrix}\right.\)\(\Leftrightarrow3\ge x\ge-4\)

Vậy \(_{min}D=13\) khi \(3\ge x\ge-4\)

P/s: trước hết thế đã nhé

Bình luận (0)
NN
27 tháng 5 2017 lúc 10:04

@phynit: Tại sao giờ em sử dụng \(L_AT_EX\) nó đảo tùm lum vậy ạ

Bình luận (1)
NN
27 tháng 5 2017 lúc 10:04

Ví dụ như bài dưới các dấu lớn hơn hoặc bằng hay gì đỏ nhảy cóc hết ạ

Bình luận (2)
KS
Xem chi tiết
TM
5 tháng 2 2021 lúc 14:23

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

Bình luận (0)
 Khách vãng lai đã xóa
TM
5 tháng 2 2021 lúc 14:25

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

Bình luận (0)
 Khách vãng lai đã xóa
US
16 tháng 11 2021 lúc 7:53

1 . 

3−x2+2x3−x2+2x

=−(x2−2x−3)=−(x2−2x−3)

=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)

=−((x−1)2−4)=−((x−1)2−4)

=4−(x−1)2≤4=4−(x−1)2≤4

Vậy MAXB=4⇔x−1=0⇒x=1

2 . 

A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98

=2(x−54)2−98=2(x−54)2−98

Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x

Vậy GTNN A = -9/8 <=> x = 5/4 

3 . 

Bình luận (0)
 Khách vãng lai đã xóa
TQ
Xem chi tiết
YN
30 tháng 6 2021 lúc 21:50

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

Bình luận (0)
 Khách vãng lai đã xóa
YN
30 tháng 6 2021 lúc 21:56

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
YN
30 tháng 6 2021 lúc 22:03

\(5.\)

\(x^2-48x+65\)

\(=\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)

Vậy \(Max=-511\)khi \(x=24\)

Bình luận (0)
 Khách vãng lai đã xóa