(2x-4)(x=22)=0
(x-17)(x^2-16)=0
(x^2+3)(x+8)=0
1) (4-3x) (10x-5)=0
2) (7-2x) (4+8x) = 0
3) (9-7x) (11-3x) = 0
4) (7-14x) (x-2) = 0
5) (2x+1) (x-3) = 0
6) (8-3x) (-3x+5) = 0
7) (16-8x) (2-6x) = 0
8) (x+4) (6x-12) = 0
9) (11-33x) (x+11) = 0
10) (x-1/4) (x+5/6) = 0
11) (7/8-2x) (3x+1/3) = 0
12) 3x - 2x^2 = 0
13) 5x + 10x^2 = 0
14) 4x + 3x^2 = 0
15) -8x^2 + x =0
16) 10x^2 - 15x = 0
17) x^2 -4 =0
18) 9 - x^2 = 0
19) x^2 -1 = 0
20) (x-3) (2x-1) = (2x-1) ( 2x+3)
21) (5+4x) (-x+2) = (5+4x) (7+5x)
22) (4+x) (x-5) = (3x-8) (x-5) = 0
23) (3x-8) (7-21x) - (9+2x) (7-21x)
24) (10+ 7x) (x+1) = (9x-2)(x-1)
25) (9x-4) (x-1/2) - (x-1/2) (6+x) = 0
26) 9x^2 - 1 = (3x-1) (x+4)
27) (x+7) (3x+1) = 49-x^2
28) (2x+1)^2 = (x-1)^2
29)x^3- 5x^2+6x = 0
30) 3x^2 + 5x + 2 = 0
Giảii giúpp mìnhh đyy mọii ngườii .
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
chiu lop 3 ma
Tìm x
(2x-7)+17=6
12-2.(3-3x)=-2
-14+3.(-x+5)=-20
-90:5.(-3-2x)=6
(x+1).(x-3)=0
(2x-2).(x+4)=0
(22+4).(x+3)=0
(5-x).(6-2x)=0
3.(x+1)+5=x+8
-4.(2x+9)-(-8x+3)-(x+13)=0
(2x - 7) + 17 = 6
=> 2x - 7 = 6 - 17
=> 2x - 7 = -11
=> 2x = -11 + 7
=> 2x = -4
=> x = -4 : 2
=> x = -2
+) 12 -2(3 - 3x)= -2
=> 2(3 - 3x) = 12 + 2
=> 2(3 - 3x) = 14
=> 3 - 3x = 14 : 2
=> 3 - 3x = 7
=> 3x = 3 - 7
=> 3x = -4
=> x = -4/3
\(\left(x+1\right)\left(x-3\right)=0\)
=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vậy...
\(\left(2x-7\right)+17=6\)
\(\left(2x-7\right)=6-17\)
\(2x-7=-11\)
\(2x=-11+7\)
\(2x=-4\)
\(x=-4:2\)
\(\Rightarrow x=-2\)
\(V\text{ậy x = -2}\)
1. 3y = 0
2. 1+x=0
3. 1-2t=0
4. 2x+x+3=0
5. 25x-20=0
6. 51x=17
7. 2x-3=x+5
8. x-8=2x+3
9. 17-2x=3x-5
10. 2x+x+22=0
11. x-3=3x+5
12.15x+1/2=0
13. 3x+1=7x-11
14. 5-3x=6x+7
15. 11-2x=x-1
16. 15-8x=9-5x
17. 25-3x=4x-5
18. 0,25x+1,5=0
19. 3x-5/6=1/2
20. -2x+14=0
giúp mik nha chìu nay mik cần gấp
thanks
1. 3y = 0
=> y = 0
2. 1+x = 0
<+ x = -1
3.
\(1-2t=0\)
\(\Leftrightarrow2t=1\)
\(\Leftrightarrow\dfrac{1}{2}\)
4. 2x +x + 3 =0
\(\Leftrightarrow3x+3=0\)
\(\Leftrightarrow x=-3\)
5.
\(25x-20=0\)
\(\Leftrightarrow25x=20\)
\(\Leftrightarrow x=\dfrac{4}{5}\)
7.
2x-3 = x+5
<=> 2x - x = 5+3
<=> x = 8
8.
x-8=2x+3
<=> x - 2x = 3+8
<=> -x = 11
<=> x = -11
9. 17-2x = 3x-5
<=> -2x-3x = -5-17
<=> -5x = -22
<=> x = \(\dfrac{22}{5}\)
10.
2x+x+22=0
<=> 3x+22=0
<=> 3x = -22
<=> x = \(\dfrac{-22}{3}\)
Mấy bài kia tự giải tương tự nhá!!!
11.
x-3=3x+5
<=> x-3x=5+3
<=> -2x=8
<=> x = -4
12. 15x + 1/2 = 0
<=> 15x = -1/2
<=> x = -1/30
13.
3x+1 = 7x-11
<=> 3x-7x = -11-1
<=> -4x=-12
<=> x = 3
14.
5-3x = 6x + 7
<=> -3x-6x = 7-12
<=> -9x = -5
<=> x = 5/9
15.
11-2x=x-1
<=> -2x-x = -1-11
<=> -3x = -12
<=> x = 4
16.
15 - 8x = 9-5x
<=> -8x+5x = 9 - 15
<=> -3x = -6
<=> x=2
17.
25-3x=4x-5
<=> -3x-4x = -5-25
<=> -7x = -30
<=> x = 30/7
18.
0,25x+1,5=0
<=> 0,25x = -1,5
<=> x = -6
19.
3x-5/6 = 1/2
<=> 3x - 5/6 = 3/6
<=> 3x-5=3
<=> 3x = 8
<=> x = 8/3
20.
-2x + 14 =0
<=> -2x = -14
<=> x = 7
BT2: Tìm x 2, 3x(x-4)+2x-8=0 3, 4x(x-3)+x^2-9=0 4, x(x-1)-x^2+3x=0 5, x(2x-1)-2x^2+5x=16
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
x=4x=4 là nghiệm của những phương trình nào dưới đây?
\frac{x^2-6x+8}{x^2-9x+20}=0x2−9x+20x2−6x+8=0 \frac{4x-16+\left(8-2x\right)}{x^2+16}=0x2+164x−16+(8−2x)=0 \frac{x^2-16}{x^3+16}=0x3+16x2−16=0 \frac{x^3-64}{x^2-16}=0x2−16x3−64=0Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
1) 16 - 8x = 0 ⇔ 8(2 - x) = 0⇔ 2 - x = 0 ⇔ x = 2
Vậy phương trình có nghiệm là x = 2
Tìm x sao cho x thuộc tập hợp số nguyên:
1) x - 43 = (35 - x) - 48
2) 305 - x + 14 = 48 + (x + 23)
3) - (x - 6 + 85) = (x + 51) - 54
4) - (35 - x - 37 - x) = 33 - x
5) 13 - | x | = | -4 |
6) | x | - 3 + 6 = 16
7) 35 - | 2x - 1 | = 14
8) | 3x - 2 | + 5 = 9 - x
9) x - ( -25 + 7 ) > 12 - ( 15 - 14 )
10) | 17 + ( x - 15 ) | < 4
11) x2 - 5x = 0
12) | x-9 | . (-8) = -16
13) | 4 - 5x = 24 với x < hoặc = 0
14) x . ( x - 2 ) > 0
15) x . ( x - 2 ) < 0
16) (x-1) . (y+1) = 5
17) x . ( y +2 ) = -8
18) xy - 2x - 2y = 0
19) 2x - 5 chia hết cho x - 1
1) x - 43 = (35 - x) - 48
=> x + x = 35 - 48 + 43
=> x + x = 30
=> x = 30 : 2
=> x = 15
2) 305 - x + 14 = 48 + (x + 23)
=> 305 - x + 14 = 48 + x + 23
=> -x - x = 48 + 23 - 14 - 305
=> -x - x = -248
=> -x = -248 : 2
=> -x = -124
=> x = 124
3) - (x - 6 + 85) = (x + 51) - 54
=> -x + 6 - 85 = x + 51 - 54
=> -x - x = 51 - 54 + 85 - 6
=> -x - x = 76
=> -x = 76 : 2
=> -x = 38
=> x = -38
4) - (35 - x - 37 - x) = 33 - x
=> -35 + x + 37 + x = 33 - x
=> x + x + x = 33 + 35 - 37
=> x + x + x = 31
=> x = 31 : 3
=> x \(=\dfrac{31}{3}\)
Vì x \(\in\) Z nên không có giá trị x nào thỏa mãn trong câu này.
5) 13 - | x | = | -4 |
=> 13 - |x| = 4
=> |x| = 13 - 4
=> |x| = 9
=> \(\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
6) | x | - 3 + 6 = 16
=> |x| = 16 - 6 + 3
=> |x| = 13
=> \(\left[{}\begin{matrix}x=13\\x=-13\end{matrix}\right.\)
7) 35 - | 2x - 1 | = 14
=> |2x - 1| = 35 - 14
=> |2x - 1| = 21
=> \(\left[{}\begin{matrix}2x-1=21\\2x-1=-21\end{matrix}\right.=>\left[{}\begin{matrix}2x=21+1\\2x=-21+1\end{matrix}\right.=>\left[{}\begin{matrix}2x=22\\2x=-20\end{matrix}\right.=>\left[{}\begin{matrix}x=22:2\\x=-20:2\end{matrix}\right.=>\left[{}\begin{matrix}x=11\\x=-10\end{matrix}\right.\)
8) | 3x - 2 | + 5 = 9 - x
=> |3x - 2| = 9 - 5 - x
=> |3x - 2| = 4 - x
=> \(\left[{}\begin{matrix}3x-2=4-x\\3x-2=x-4\end{matrix}\right.=>\left[{}\begin{matrix}3x+x=4+2\\3x-x=-4+2\end{matrix}\right.=>\left[{}\begin{matrix}4x=6\\2x=-2\end{matrix}\right.=>\left[{}\begin{matrix}x=6:4\\x=-2:2\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{6}{4}\\x=-1\end{matrix}\right.\)
Vì x \(\in\) Z nên x = -1.
9) x - ( -25 + 7 ) > 12 - ( 15 - 14 )
=> x - (-18) > 12 - 1
=> x + 18 > 11
=> x > 11 - 18
=> x > -7
10) | 17 + ( x - 15 ) | < 4
=> \(\left[{}\begin{matrix}17+\left(x-15\right)< 4\\17+\left(x-15\right)< -4\end{matrix}\right.=>\left[{}\begin{matrix}x-15< 4-17\\x-15< -4-17\end{matrix}\right.=>\left[{}\begin{matrix}x-15< -15\\x-15< -21\end{matrix}\right.=>\left[{}\begin{matrix}x< -15+15\\x< -21+15\end{matrix}\right.=>\left[{}\begin{matrix}x< 0\\x< -6\end{matrix}\right.=>x< -6\)
11) x2 - 5x = 0
=> x . (2 - 5) = 0
=> x . (-3) = 0
=> x = 0 : (-3)
=> x = 0
12) | x-9 | . (-8) = -16
=> |x - 9| = (-16) : (-8)
=> |x - 9| = 3
=> \(\left[{}\begin{matrix}x-9=3\\x-9=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=3+9\\x=-3+9\end{matrix}\right.=>\left[{}\begin{matrix}x=12\\x=6\end{matrix}\right.\)
13) | 4 - 5x | = 24 với x < hoặc = 0
=> \(\left[{}\begin{matrix}4-5x=24\\4-5x=-24\end{matrix}\right.=>\left[{}\begin{matrix}5x=4-24\\5x=4-\left(-24\right)\end{matrix}\right.=>\left[{}\begin{matrix}5x=-20\\5x=28\end{matrix}\right.=>\left[{}\begin{matrix}x=-20:5\\x=28:5\end{matrix}\right.=>\left[{}\begin{matrix}x=-4\\x=\dfrac{28}{5}\end{matrix}\right.\)
Vì x \(\le\) 0 nên x = -4
14) x . ( x - 2 ) > 0
=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-2< 0\end{matrix}\right.\end{matrix}\right.=>\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 2\end{matrix}\right.\end{matrix}\right.=>\left[{}\begin{matrix}x>2\\x< 2\end{matrix}\right.\)
15) x . ( x - 2 ) < 0
=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x-2< 0\end{matrix}\right.\end{matrix}\right.=>\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x< 2\end{matrix}\right.\end{matrix}\right.=>\left[{}\begin{matrix}2>x< 0\left(loại\right)\\0< x< 2\left(chọn\right)\end{matrix}\right.=>0< x< 2\)
16) (x-1) . (y+1) = 5
=> \(\left[{}\begin{matrix}x-1=5\\y+1=1\end{matrix}\right.=>\left[{}\begin{matrix}x=5+1\\y=1-1\end{matrix}\right.=>\left[{}\begin{matrix}x=6\\y=0\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x-1=1\\y+1=5\end{matrix}\right.=>\left[{}\begin{matrix}x=1+1\\y=5-1\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x-1=-1\\y+1=-5\end{matrix}\right.=>\left[{}\begin{matrix}x=-1+1\\y=-5-1\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\y=-6\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x-1=-5\\y+1=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-5+1\\y=-1-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\)
17) x . ( y +2 ) = -8
=> \(\left[{}\begin{matrix}x=1\\y+2=-8\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\y=-8-2\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\y=-10\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x=-1\\y+2=8\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\y=8-2\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x=-8\\y+2=1\end{matrix}\right.=>\left[{}\begin{matrix}x=-8\\y=1-2\end{matrix}\right.=>\left[{}\begin{matrix}x=-8\\y=-1\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x=8\\y+2=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=8\\y=-1-2\end{matrix}\right.=>\left[{}\begin{matrix}x=8\\y=-3\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x=2\\y+2=-4\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\y=-4-2\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\y=-6\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x=-2\\y+2=4\end{matrix}\right.=>\left[{}\begin{matrix}x=-2\\y=4-2\end{matrix}\right.=>\left[{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x=4\\y+2=-4\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\y=-4-2\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\y=-6\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x=-4\\y+2=2\end{matrix}\right.=>\left[{}\begin{matrix}x=-4\\y=2-2\end{matrix}\right.=>\left[{}\begin{matrix}x=-4\\y=0\end{matrix}\right.\)
18) xy - 2x - 2y = 0
=> x . (y - 2) - 2y = 0
=> x . (y - 2) - 2y - 4 = -4
=> x . (y - 2) - 2 . (y - 2) = -4
=> (y - 2) . (x - 2) = -4
=> \(\left[{}\begin{matrix}y-2=1\\x-2=-4\end{matrix}\right.=>\left[{}\begin{matrix}y=1+2\\x=-4+2\end{matrix}\right.=>\left[{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}y-2=-1\\x-2=4\end{matrix}\right.=>\left[{}\begin{matrix}y=-1+2\\x=4+2\end{matrix}\right.=>\left[{}\begin{matrix}y=1\\x=6\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}y-2=2\\x-2=-2\end{matrix}\right.=>\left[{}\begin{matrix}y=2+2\\x=-2+2\end{matrix}\right.=>\left[{}\begin{matrix}y=4\\x=0\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}y-2=-2\\x-2=2\end{matrix}\right.=>\left[{}\begin{matrix}y=-2+2\\x=2+2\end{matrix}\right.=>\left[{}\begin{matrix}y=0\\x=4\end{matrix}\right.\)
19) 2x - 5 \(⋮\) x - 1
=> (2x - 2) - (5 - 2) \(⋮\) x - 1
=> 2(x - 1) - 3 \(⋮\) x - 1
Vì 2(x - 1) \(⋮\) x - 1 nên 3 \(⋮\) x - 1
=> x - 1 \(\in\) Ư(3) = {-3; -1; 1; 3}
=> x \(\in\) {-2; 0; 2; 4}
P/s: Mình không bảo đảm là đúng hết nên câu nào sai thì bạn thông cảm nha~
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
Mấy cái này chuyển vế đổi dấu là xong í mà :3
1,
16-8x=0
=>16=8x
=>x=16/8=2
2,
7x+14=0
=>7x=-14
=>x=-2
3,
5-2x=0
=>5=2x
=>x=5/2
Mk làm 3 cau làm mẫu thôi
Lúc đăng đừng đăng như v :>
chi ra khỏi ngt nản
từ câu 1 đến câu 8 cs thể làm rất dễ,bn tham khảo bài của bn muwaa r làm những câu cn lại
1, 16 - 8x = 0
<=>-8x = 16
<=> x = -2
Vậy_
2, 7x + 14 = 0
<=> 7x = -14
<=> x = -2
3, 5 - 2x = 0
<=> - 2x = -5
<=> x =\(\frac{5}{2}\)
Vậy_
4, 3x - 5 = 7
<=> 3x = 7 + 5
<=> 3x = 12
<=> x = 4
Vậy...
5, 8 - 3x = 6
<=> - 3x = 6 - 8
<=> -3x = - 2
<=> x =\(\frac{2}{3}\)
Vậy......
Tìm x biết
a) (x-3)^2 -4=0
b) ( 2x+3)^2 - (2x+1)(2x-1) =22
c) (4x+3)(4x-3) -(4x-5)^2 =16
d) x^3 -9x^2 +27x-27 =-8
e) (x+1)^3 - x^2(x+3) =2
a) \(\left(x-3\right)^2-4=0\)
\(\left(x-3\right)^2=0+4\)
\(\left(x-3\right)^2=4\)
\(\left(x-3\right)^2=\pm4\)
\(\left(x-3\right)^2=\pm2^2\)
\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
\(4x^2+12x+9-4x^2+1=22\)
\(12x+10=22\)
\(12x=22-10\)
\(12x=12\)
\(x=1\)
c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)
\(16x^2-9-16x^2+40x-25=16\)
\(-34+40x=16\)
\(40x=16+34\)
\(40x=50\)
\(x=\frac{50}{40}=\frac{5}{4}\)
d) \(x^3-9x^2+27x-27=-8\)
\(x^3-9x^2+27x-27+8=0\)
\(x^3-9x^2+27x-19=0\)
\(\left(x^2-8x+19\right)\left(x-1\right)=0\)
Vì \(\left(x^2-8x+19\right)>0\) nên:
\(x-1=0\)
\(x=1\)
e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)
\(3x+1=2\)
\(3x=2-1\)
\(3x=1\)
\(x=\frac{1}{3}\)