Những câu hỏi liên quan
HH
Xem chi tiết
NC
12 tháng 9 2021 lúc 22:47

1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)

 \(y=2-\left(-cosx\right).\left(-sinx\right)\)

y = 2 - sinx.cosx

y = \(2-\dfrac{1}{2}sin2x\)

Max = 2 + \(\dfrac{1}{2}\) = 2,5

Min = \(2-\dfrac{1}{2}\) = 1,5

2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)

Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)

Max = \(\sqrt{5}\)

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 16:03

a)     \(\sin \left( {2x - \frac{\pi }{3}} \right) =  - \frac{{\sqrt 3 }}{2}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{3} =  - \frac{\pi }{3} + k2\pi \\2x - \frac{\pi }{3} = \pi  + \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x = k2\pi \\2x = \frac{{5\pi }}{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{{5\pi }}{6} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy phương trình có nghiệm là: \(x \in \left\{ {k\pi ;\frac{{5\pi }}{6} + k\pi } \right\}\)

b)     \(\sin \left( {3x + \frac{\pi }{4}} \right) =  - \frac{1}{2}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}3x + \frac{\pi }{4} =  - \frac{\pi }{6} + k2\pi \\3x + \frac{\pi }{4} = \frac{{7\pi }}{6} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}3x =  - \frac{{5\pi }}{{12}} + k2\pi \\3x = \frac{{11\pi }}{{12}} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{{5\pi }}{{36}} + k\frac{{2\pi }}{3}\\x = \frac{{11\pi }}{{36}} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Bình luận (0)
HM
21 tháng 9 2023 lúc 16:03

c)     \(\cos \left( {\frac{x}{2} + \frac{\pi }{4}} \right) = \frac{{\sqrt 3 }}{2}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} + \frac{\pi }{4} = \frac{\pi }{6} + k2\pi \\\frac{x}{2} + \frac{\pi }{4} =  - \frac{\pi }{6} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} =  - \frac{\pi }{{12}} + k2\pi \\\frac{x}{2} =  - \frac{{5\pi }}{{12}} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{6} + k4\pi \\x =  - \frac{{5\pi }}{6} + k4\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

d)     \(2\cos 3x + 5 = 3\)

\(\begin{array}{l} \Leftrightarrow \cos 3x =  - 1\\ \Leftrightarrow \left[ \begin{array}{l}3x = \pi  + k2\pi \\3x =  - \pi  + k2\pi \end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k\frac{{2\pi }}{3}\\x = \frac{{ - \pi }}{3} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

Bình luận (0)
HM
21 tháng 9 2023 lúc 16:03

e)      

\(\begin{array}{l}3\tan x =  - \sqrt 3 \\ \Leftrightarrow \tan x = \frac{{ - \sqrt 3 }}{3}\\ \Leftrightarrow \tan x = \tan \left( { - \frac{\pi }{6}} \right)\\ \Leftrightarrow x =  - \frac{\pi }{6} + k\pi \end{array}\)

g)

\(\begin{array}{l}\cot x - 3 = \sqrt 3 \left( {1 - \cot x} \right)\\ \Leftrightarrow \cot x - 3 = \sqrt 3  - \sqrt 3 \cot x\\ \Leftrightarrow \cot x + \sqrt 3 \cot x = \sqrt 3  + 3\\ \Leftrightarrow (1 + \sqrt 3 )\cot x = \sqrt 3  + 3\\ \Leftrightarrow \cot x = \sqrt 3 \\ \Leftrightarrow \cot x = \cot \frac{\pi }{6}\\ \Leftrightarrow x = \frac{\pi }{6} + k\pi \end{array}\)

Bình luận (0)
H24
Xem chi tiết
NL
18 tháng 10 2020 lúc 7:33

Câu 2 bạn coi lại đề

3.

\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)

\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)

\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
18 tháng 10 2020 lúc 7:33

4.

Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm

5.

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)

\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)

\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2sin^3x-sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
18 tháng 10 2020 lúc 7:34

6.

\(sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-2\sqrt{3}cosx.sin2x.cos2x\)

\(\Leftrightarrow sinx.sin4x=\sqrt{2}cos\left(\frac{\pi}{6}-x\right)-\sqrt{3}cosx.sin4x\)

\(\Leftrightarrow sin4x\left(sinx+\sqrt{3}cosx\right)=\sqrt{2}sin\left(x+\frac{\pi}{3}\right)\)

\(\Leftrightarrow sin4x\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow sin4x.sin\left(x+\frac{\pi}{3}\right)-\frac{\sqrt{2}}{2}sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left(sin4x-\frac{\sqrt{2}}{2}\right)sin\left(x+\frac{\pi}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin4x=\frac{\sqrt{2}}{2}\\sin\left(x+\frac{\pi}{3}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
H24
Xem chi tiết
TN
Xem chi tiết
NL
7 tháng 8 2020 lúc 9:54

a/

\(sin^2x-sinx=2\left(1-sin^2x\right)\)

\(\Leftrightarrow3sin^2x-sinx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=arcsin\left(\frac{2}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{2}{3}\right)+k2\pi\end{matrix}\right.\)

2.

\(2sin^2x+\left(1-\sqrt{3}\right)sinx-\frac{\sqrt{3}}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\frac{1}{2}\\sinx=\frac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\\x=\frac{\pi}{3}+k2\pi\\x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

3.

\(\Leftrightarrow\left[{}\begin{matrix}3x+\frac{\pi}{4}=\frac{\pi}{8}+k2\pi\\3x+\frac{\pi}{4}=-\frac{\pi}{8}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{24}+\frac{k2\pi}{3}\\x=-\frac{\pi}{8}+\frac{k2\pi}{3}\end{matrix}\right.\)

Bình luận (0)
DD
19 tháng 10 2021 lúc 21:08

\(1.\sin^2x-\sin x=2\cdot\cos^2x\)

\(\Leftrightarrow\sin^2x-\sin x=2\cdot\left(1-\sin^2x\right)\)

\(\Leftrightarrow3\cdot\sin^2x-\sin x-2=0\)

\(\orbr{\begin{cases}\sin x=1\\\sin x=\frac{-2}{3}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\\orbr{\begin{cases}x=arcsin\left(\frac{-2}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{-2}{3}\right)+k2\pi\end{cases}}\end{cases}}\)

\(\hept{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=arcsin\left(\frac{-2}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{-2}{3}\right)+k2\pi\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
H24
Xem chi tiết
NL
22 tháng 10 2020 lúc 15:29

1.

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=-\frac{\sqrt{3}}{2}\\cos4x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=...\)

(Cứ bấm máy giải pt bậc 2 như bt, nó cho 2 nghiệm rất xấu, bạn lưu 2 nghiệm vào 2 biến A; B rồi thoát ra ngoài MODE-1, tính \(\sqrt{A^2}\)\(\sqrt{B^2}\) sẽ ra dạng căn đẹp của 2 nghiệm, lưu ý dấu so với nghiệm ban đầu)

2.

\(\Leftrightarrow cos4x+1+sin\left(2x-\frac{\pi}{2}\right)=cos2x\)

\(\Leftrightarrow2cos^22x-cos2x=cos2x\)

\(\Leftrightarrow cos^22x-cos2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
22 tháng 10 2020 lúc 15:35

3.

\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left[\frac{\pi}{2}-\left(\frac{\pi}{6}-x\right)\right]=\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{2\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow...\)

4.

\(\Leftrightarrow2cos4x.cos\left(\frac{\pi}{3}\right)+2sin4x.sin\left(\frac{\pi}{3}\right)+4cos2x=-1\)

\(\Leftrightarrow cos4x+\sqrt{3}sin4x+4cos2x+1=0\)

\(\Leftrightarrow2cos^22x+2\sqrt{3}sin2x.cos2x+4cos2x=0\)

\(\Leftrightarrow2cos2x\left(cos2x+\sqrt{3}sin2x+2\right)=0\)

\(\Leftrightarrow cos2x\left(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x+1\right)=0\)

\(\Leftrightarrow cos2x\left[sin\left(2x+\frac{\pi}{6}\right)+1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin\left(2x+\frac{\pi}{6}\right)=-1\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
22 tháng 10 2020 lúc 15:37

5.

\(cos^22x+\frac{1}{2}+\frac{1}{2}cos6x=\frac{1}{2}-\frac{1}{2}cos2x\)

\(\Leftrightarrow cos^22x+\frac{1}{2}\left(cos6x+cos2x\right)=0\)

\(\Leftrightarrow cos^22x+cos4x.cos2x=0\)

\(\Leftrightarrow cos2x\left(cos2x+cos4x\right)=0\)

\(\Leftrightarrow cos2x\left(2cos^22x+cos2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-1\\cos2x=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
Xem chi tiết
NL
6 tháng 7 2020 lúc 22:17

\(sin3x=-\frac{\sqrt{3}}{2}=sin\left(-\frac{\pi}{3}\right)\)

\(\Rightarrow\left[{}\begin{matrix}3x=-\frac{\pi}{3}+k2\pi\\3x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{9}+\frac{k2\pi}{3}\\x=\frac{4\pi}{9}+\frac{k2\pi}{3}\end{matrix}\right.\)

\(sin\left(2x-\frac{\pi}{7}\right)=\frac{\sqrt{2}}{2}=sin\left(\frac{\pi}{4}\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x-\frac{\pi}{7}=\frac{\pi}{4}+k2\pi\\2x-\frac{\pi}{7}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{11\pi}{56}+k\pi\\x=\frac{25\pi}{56}+k\pi\end{matrix}\right.\)

\(sin\left(4x+1\right)=\frac{3}{5}=sina\) (với góc a sao cho \(sina=\frac{3}{5}\))

\(\Rightarrow\left[{}\begin{matrix}4x+1=a+k2\pi\\4x+1=\pi-a+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{a}{4}-\frac{1}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{4}-\frac{a}{4}-\frac{1}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

\(sin\left(2x+\frac{\pi}{7}\right)=sin\left(x-\frac{3\pi}{7}\right)\)

\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{7}=x-\frac{3\pi}{7}+k2\pi\\2x+\frac{\pi}{7}=\pi-x+\frac{3\pi}{7}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{4\pi}{7}+k2\pi\\x=\frac{3\pi}{7}+\frac{k2\pi}{3}\end{matrix}\right.\)

\(sin\left(4x+\frac{\pi}{7}\right)=\frac{1}{4}\)

Đặt \(\frac{1}{4}=sina\Rightarrow sin\left(4x+\frac{\pi}{7}\right)=sina\)

\(\Rightarrow\left[{}\begin{matrix}4x+\frac{\pi}{7}=a+k2\pi\\4x+\frac{\pi}{7}=\pi-a+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{28}+\frac{a}{4}+\frac{k\pi}{2}\\x=\frac{3\pi}{14}-\frac{a}{4}+\frac{k\pi}{2}\end{matrix}\right.\)

Bình luận (0)