chứng minh đẳng thức 2/3x-2/x+1(x+1/3x-x-1) x-1/x=2x/x-1
chứng minh đẳng thức:[2/3x-2/x+1.(x+1/3x-x-1)]:x-1/x=2x/x-1
tìm x nguyên dương để biểu thức nguyên và không bé hơn 2
Chứng minh đẳng thức:
\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}=\frac{2x}{x-1}\)
\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2\left(x+1\right)}{\left(x+1\right).3x}-\frac{2\left(-x-1\right)}{x+1}\right]:\frac{x-1}{x}\)
\(=\)\(\left[\frac{2}{3x}-\frac{2\left(x+1\right)}{\left(x+1\right).3x}+\frac{2\left(x+1\right)}{x+1}\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2}{3x}+2\right]:\frac{x-1}{x}\)
\(=2.\frac{x}{x-1}=\frac{2x}{x-1}\)\(\left(đpcm\right)\)
Chứng minh đẳng thức
\(\text{[}\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\text{]}:\frac{x-1}{x}=\frac{2x}{x-1}\)
ĐKXĐ:...
\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}=\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{-3x^2-2x+1}{3x}\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2\left(x+1\right)\left(1-3x\right)}{3x\left(x+1\right)}\right].\frac{x}{x-1}=\left(\frac{2}{3x}-\frac{2\left(1-3x\right)}{3x}\right).\left(\frac{x}{x-1}\right)\)
\(=\left(\frac{2-2+6x}{3x}\right)\left(\frac{x}{x-1}\right)=\frac{2x}{x-1}\)
Chứng minh đẳng thức:
a, (x^2-2x/2x^2+8-2x^2/8-4x+2x^2-x^3)(1-1/x-2/x^2)=x+1/2x
b, [2/3x-2/x+1(x+1/3x-x-1)]:x-1/x=2x/x-1
c, [2/(x+1)^3(1/x+1)+1/x^2+2x+1(1/x^2+1)]:x-1/x^3=x/x-1
Chứng minh bất đẳng thức:
\(\left[\frac{2}{3x}-\frac{2}{x+1}.\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}=\frac{2x}{x-1}\)
chứng minh đẳng thức:[2/3x-2/x+1.(x+1/3x-x-1)]:x-1/x=2x/x-1
(chuy rang / la phan so cac bangiup minh na ai tra loi nhanh va dung nhat se dc 3 tick )
\(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}=\frac{2x}{x-1}\)( Điều kiện \(x\ne0\))
VT = \(\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-x-1\right)\right]:\frac{x-1}{x}\)
\(=\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1}{3x}-\frac{3x^2}{3x}-\frac{3x}{3x}\right)\right].\frac{x}{x-1}\)
\(=\left[\frac{2}{3x}-\frac{2}{x+1}\left(\frac{x+1-3x^2-3x}{3x}\right)\right].\frac{x}{x-1}\)
\(=\left(\frac{2}{3x}-\frac{2}{x+1}.\frac{-3x\left(x+1\right)+\left(x+1\right)}{3x}\right).\frac{x}{x-1}\)
\(=\left(\frac{2}{3x}-\frac{2}{x+1}.\frac{\left(x+1\right)\left(-3x+1\right)}{3x}\right).\frac{x}{x-1}\)
\(=\frac{2}{3x}-\frac{2x\left(-3x+1\right)}{3x}.\frac{x}{x-1}\)
\(=\left(\frac{2+6x-2}{3x}\right).\frac{x}{x-1}\)
\(=\frac{6x}{3x}.\frac{x}{x-1}\)
\(=\frac{2x}{x-1}=VP\)
Vậy đẳng thức được chứng minh .
Chứng minh các biểu thức sau ko phụ thuộc vào x :
A= (3x-2). ( 3x+2) - (3x+1) mũ 2 - 3.(-2x-1)
B= (x+1).(x-1) - (x-2) mũ 2 - 4.(x+3)
NẾU ĐC THÌ DÙNG CÁC HÀNG ĐẲNG THỨC Ạ
a) \(A=\left(3x-2\right)\left(3x+2\right)-\left(3x+1\right)^2-3.\left(-2x-1\right)\)
\(=\left(3x\right)^2-4-\left(9x^2+6x+1\right)+6x+3\)
\(=9x^2-4-9x^2-6x-1+6x+3\)
\(=-2\) không phụ thuộc vào x
b) \(B=\left(x+1\right)\left(x-1\right)-\left(x-2\right)^2-4.\left(x+3\right)\)
\(=x^2-1-\left(x^2-4x+4\right)-\left(4x+12\right)\)
\(=x^2-1-x^2+4x-4-4x-12\)
\(=-17\)không phụ thuộc vào x.
Chứng minh đẳng thức sau :
X(x+1)(x+2)=x³+3x²+2x
ta có \(x\left(x+1\right)\left(x+2\right)=\left(x^2+x\right)\left(x+2\right)\)
\(=x^3+2x^2+x^2+2x\)
\(=x^3+3x^2+2x\)( đpcm )
học tốt
Biến đổi VT ta có :
\(x\left(x+1\right)\left(x+2\right)\)
\(=\left(x^2+x\right)\left(x+2\right)\)
\(=x^3+2x^2+x^2+2x\)
\(=x^3+\left(2x^2+x^2\right)+2x\)
\(=x^3+3x^2+2x=VP\)
Vậy \(x\left(x+1\right)\left(x+2\right)=x^3+3x^2+2x\)