Những câu hỏi liên quan
H24
Xem chi tiết
LH
19 tháng 6 2021 lúc 21:24

Đk:\(x\ge1;x\le-2\)

Đặt \(t=\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}\)

\(\Rightarrow t^2=\left(x-1\right)\left(x+2\right)\)

Pttt: \(t^2+4t=12\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-6\end{matrix}\right.\)

TH1: \(t=2\Rightarrow\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}=2\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-1\right)\left(x+2\right)=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x^2+x-6=0\end{matrix}\right.\)\(\Rightarrow x=2\) (thỏa mãn)

TH2:\(t=-6\Rightarrow\left(x-1\right)\sqrt{\dfrac{x+2}{x-1}}=-6\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1< 0\\\left(x-1\right)\left(x+2\right)=36\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x^2+x-38=0\end{matrix}\right.\)\(\Rightarrow x=\dfrac{-1-3\sqrt{17}}{2}\) (thỏa mãn)

Vậy...

Bình luận (3)
H24
Xem chi tiết
H24
Xem chi tiết
NL
20 tháng 6 2021 lúc 17:00

Đặt \(\sqrt{x^2+1}=t>0\)

\(\Rightarrow\left(4x-1\right)t=2t^2-2x\)

\(\Leftrightarrow2t^2-\left(4x-1\right)t-2x=0\)

\(\Delta=\left(4x-1\right)^2+16x=\left(4x+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{4x-1-\left(4x+1\right)}{4}=-\dfrac{1}{2}\left(loại\right)\\t=\dfrac{4x-1+4x+1}{4}=2x\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+1}=2x\) (\(x\ge0\))

\(\Leftrightarrow x^2+1=4x^2\)

\(\Rightarrow x=\dfrac{\sqrt{3}}{3}\)

Bình luận (0)
H24
Xem chi tiết
ND
Xem chi tiết
LP
3 tháng 9 2023 lúc 22:03

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

Bình luận (0)
MT
Xem chi tiết
HP
1 tháng 8 2021 lúc 9:05

a, ĐK: \(x\ge1\)

Đặt \(\sqrt{5x-1}=a;\sqrt{x-1}=b\left(a,b\ge0\right)\)

\(pt\Leftrightarrow\left(a+b\right)\left(\dfrac{a^2+b^2}{2}-ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2=2\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)\left(a-b-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=b+2\end{matrix}\right.\)

TH1: \(a=b\Leftrightarrow\sqrt{5x-1}=\sqrt{x-1}\Leftrightarrow x=0\left(l\right)\)

TH2: \(a=b+2\Leftrightarrow\sqrt{5x-1}=\sqrt{x-1}+2\)

\(\Leftrightarrow5x-1=x-1+4+4\sqrt{x-1}\)

\(\Leftrightarrow4x-4-4\sqrt{x-1}=0\)

\(\Leftrightarrow4x-4-4\sqrt{x-1}+1=1\)

\(\Leftrightarrow\left(2\sqrt{x-1}-1\right)^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x-1}-1=1\\2\sqrt{x-1}-1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-1}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
LH
18 tháng 6 2021 lúc 21:30

Đk:\(x\ge-1\)

Đặt \(\left(a,b,c\right)=\left(x;\sqrt{x+1};\sqrt{2}\right)\)

Pt tt: \(a^3+b^3+c^3=\left(a+b+c\right)^3\)

\(\Leftrightarrow a^3+b^3+c^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)

\(\Leftrightarrow0=3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)

\(\Leftrightarrow3\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)

\(\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\a+c=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{x+1}=0\\\sqrt{x+1}+\sqrt{2}=0\left(vn\right)\\x+\sqrt{2}=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=-x\\x=-\sqrt{2}\left(ktm\right)\end{matrix}\right.\)\(\Rightarrow\)\(\sqrt{x+1}=-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le0\\x+1=x^2\end{matrix}\right.\)\(\Rightarrow x=\dfrac{1-\sqrt{5}}{2}\) (tm)

Vậy...

Bình luận (0)
LV
Xem chi tiết
LH
Xem chi tiết