Những câu hỏi liên quan
HB
Xem chi tiết
BB
Xem chi tiết
NT
9 tháng 9 2023 lúc 7:15

\(4sin\left(x+\dfrac{\pi}{3}\right).cos\left(x-\dfrac{\pi}{6}\right)=m^2+\sqrt[]{3}sin2x-cos2x\)

\(\Leftrightarrow4.\left(-\dfrac{1}{2}\right)\left[sin\left(x+\dfrac{\pi}{3}+x-\dfrac{\pi}{6}\right)+sin\left(x+\dfrac{\pi}{3}-x+\dfrac{\pi}{6}\right)\right]=m^2+2.\left[\dfrac{\sqrt[]{3}}{2}.sin2x-\dfrac{1}{2}.cos2x\right]\)

\(\Leftrightarrow2\left[sin\left(2x+\dfrac{\pi}{6}\right)+sin\left(2x-\dfrac{\pi}{6}\right)\right]=m^2+2\)

\(\Leftrightarrow2.2sin2x.cos\dfrac{\pi}{6}=m^2+2\)

\(\Leftrightarrow2.2sin2x.\dfrac{\sqrt[]{3}}{2}=m^2+2\)

\(\Leftrightarrow2\sqrt[]{3}sin2x.=m^2+2\)

\(\Leftrightarrow sin2x.=\dfrac{m^2+2}{2\sqrt[]{3}}\)

Phương trình có nghiệm khi và chỉ khi

\(\left|\dfrac{m^2+2}{2\sqrt[]{3}}\right|\le1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m^2+2}{2\sqrt[]{3}}\ge-1\\\dfrac{m^2+2}{2\sqrt[]{3}}\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2\ge-2\left(1+\sqrt[]{3}\right)\left(luôn.đúng\right)\\m^2\le2\left(1-\sqrt[]{3}\right)\end{matrix}\right.\)

\(\Leftrightarrow-\sqrt[]{2\left(1-\sqrt[]{3}\right)}\le m\le\sqrt[]{2\left(1-\sqrt[]{3}\right)}\)

Bình luận (0)
1H
Xem chi tiết
MB
Xem chi tiết
NL
2 tháng 1 2024 lúc 20:33

Phương trình trên có nghiệm kép khi:

\(\Delta'=\left(m-9\right)^2-\left(m+7\right)\left(-7m+15\right)=0\)

\(\Leftrightarrow8\left(m^2+2m-3\right)=0\)

\(\Leftrightarrow8\left(m-1\right)\left(m+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)

- Với \(m=1\) nghiệm kép của pt là \(x=\dfrac{m-9}{m+7}=-1\)

- Với \(m=-3\) nghiệm kép của pt là \(x=\dfrac{m-9}{m+7}=-3\)

Bình luận (0)
NT
Xem chi tiết
TB
Xem chi tiết
NG
16 tháng 10 2021 lúc 22:14

C) Pt \(\Rightarrow m\cdot\dfrac{1-cos2x}{2}-\left(m-1\right)sin2x+\left(2m+1\right)\cdot\dfrac{1+cos2x}{2}=0\)

\(\Rightarrow\left(m+1\right)cos2x-\left(2m-2\right)sin2x=-1-3m\)

Pt có nghiệm:  \(\Leftrightarrow\) \(\left(m+1\right)^2+\left[-\left(2m-2\right)\right]^2\ge\left(1+3m\right)^2\)

                        \(\Rightarrow\dfrac{-3-\sqrt{13}}{2}\le m\le\dfrac{-3+\sqrt{13}}{2}\)

Pt vô nghiệm: \(\Rightarrow\left\{{}\begin{matrix}m>\dfrac{-3+\sqrt{13}}{2}\\m< \dfrac{-3-\sqrt{13}}{2}\end{matrix}\right.\)

                        

Bình luận (0)
H24
Xem chi tiết
TG
30 tháng 7 2021 lúc 11:21

undefined

undefined

Bình luận (0)
NT
30 tháng 7 2021 lúc 13:37

b) Thay x=2 vào pt, ta được:

\(4\left(m^2-1\right)-4m+m^2+m+4=0\)

\(\Leftrightarrow4m^2-4-4m+m^2+m+4=0\)

\(\Leftrightarrow5m^2-3m=0\)

\(\Leftrightarrow m\left(5m-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{5}\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta được:

\(x_1+x_2=\dfrac{2m}{m^2-1}\)

\(\Leftrightarrow\left[{}\begin{matrix}x_2+2=0\\x_2+2=\dfrac{6}{5}:\left(\dfrac{36}{25}-1\right)=\dfrac{30}{11}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=-2\\x_2=\dfrac{8}{11}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
PB
Xem chi tiết
CT
8 tháng 6 2017 lúc 2:06

Đáp án B

sin 2 x + 5 π 2 − m cos x + 1 = 0 ⇔ c o s 2 x − m cos x + 1 = 0 ⇔ 2 c o s 2 x = m cos x ⇔ cos x = 0 cos x = m 2 ⇔ x = π 2 + k π cos x = m 2

Mà  x ∈ 0 ; 4 π 3 ⇒ x = π 2 cos x = m 2 *

Để phương trình có đúng 3 nghiệm trên 0 ; 4 π 3 ⇔ *  có 2 nghiệm thuộc  0 ; 4 π 3

⇔ − 1 < m 2 ≤ − 1 2 ⇔ − 2 < m ≤ − 1

Bình luận (0)