CMR:Tổng độ dài ba đường trung tuyến của một tam giác nhỏ hơn chu vi của tam giác ấy.
chứng minh rằng tổng các độ dài ba đường trung tuyến của 1 tam giác lớn hơn 3/4 chu vi và nhỏ hơn chu vi của tam giác ấy
Vẽ tam giác ABC với các trung tuyến AD, BE, CF, trọng tâm (giao điểm 3 trung tuyến) là G.
Gọi M là điểm đối xứng của A qua D ---> D vừa là trung điểm AM, vừa trung điểm BC ---> ABMC là hình bình hành
---> BM=AC
Xét tam giác ABM---> \(AD< AB+BM\Leftrightarrow2AM< AB+AC\)(BĐT tam giác)
Hoàn toàn tương tự \(\Rightarrow\hept{\begin{cases}2BE< BC+BA\\2CF< CA+CB\end{cases}}\)
Cộng các BĐT vế theo vế \(\Rightarrow2\left(AM+BE+CF\right)< 2\left(AB+BC+CA\right)\Rightarrow AM+BE+CF< AB+BC+CA\)--->ĐPCM
Vì G là trọng tâm tam giác ABC nên \(AG=\frac{2}{3}AM,BG=\frac{2}{3}BE,CG=\frac{2}{3}CF\)
Xét tam giác AGB \(\Rightarrow AB< AG+BG=\frac{2}{3}\left(AM+BE\right)\)(BĐT tam giác)
Hoàn toàn tương tự \(\Rightarrow\hept{\begin{cases}BC< \frac{2}{3}\left(BE+CF\right)\\CA< \frac{2}{3}\left(CF+AM\right)\end{cases}}\)
Cộng các BĐT vế theo vế \(\Rightarrow AB+BC+CA< 2.\frac{2}{3}\left(AM+BE+CF\right)\)
\(\Rightarrow\frac{3}{4}\left(AB+BC+CA\right)< AM+BE+CF\)--->ĐPCM
CMR tổng độ dài ba đường trung tuyến của một tam giác lớn hơn \(\frac{3}{4}\) chu vi và nhỏ hơn chu vi của tam giác ấy
Bạn tự vẽ hình nha
Xét tg ABC có các đường trung tuyến AM, BD, CE. Đặt BC= a; AC= c. Theo bài ra ta có: AM< \(\frac{b+c}{2}\)
CMTT: BD< \(\frac{a+c}{2}\) ; CE < \(\frac{a+b}{2}\)
Suy ra AM+BD+CE < a+b+c
Ta có BD+CE> \(\frac{3}{2}\) a
CMTT ta có:AM+CE > \(\frac{3}{2}\) b
AM+BD> \(\frac{3}{2}\) c
Suy ra 2(AM+BD+CE) > \(\frac{3}{2}\) ( a+c+c)
Do đó : AM+BD+CE > \(\frac{3}{4}\) ( a+b+c )
*) Chứng minh: AM + BD + CE < AB + BC + CA
+) Trên tia đối của tia MA lấy K sao cho MÃ = MK
Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC
+) Xét tam giác ABK có: AK < AB +BK mà AK = 2.AM ; BK = AC
=> 2.AM < AB + AC
Tương tự, ta có: 2.BD < AB + BC
2.CE < AC + BC
Cộng từng vế của
=> 2.(AM + BD + CE) < 2. (AB + BC + CA)
=> ÂM + BD + CÉ < AB + BC + CA
*) Chứng minh:
(AB + BC + CA) < AM + BD + CE
+) Xét tam giác AGB có: AG + GB > AB
mà AG = .AM ; BG = .BD (do G là trong tâm tam giác ABC)
.(AM + BD) > AB
+) Tương tự, ta có: 2/3
(AM + CE) > AC; 2/3
(BD + CE) > BC
=> 2/3.2. (AM + BD + CE) > AB + BC + CA
<=> (ÂM + BD + CE) > AB + BC + CA
=> AM + BD + CE > (AB + BC + CA)
=> ĐPCM
Chứng minh rằng tổng độ dài ba đường trung tuyến của 1 tam giác lớn hơn \(\frac{3}{4}\)chu vi và nhỏ hơn chu vi của tam giác ấy
Xét tam giác ABC như hình vẽ. ta cần chứng minh: \(\frac{3}{4}\)(AB + BC + CA) < AM + BD + CE < AB + BC + CA
*) Chứng minh: AM + BD + CE < AB + BC + CA
+) Trên tia đối của tia MA lấy K sao cho MA = MK
Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC
+) Xét tam giác ABK có: AK < AB +BK mà AK = 2.AM ; BK = AC
=> 2.AM < AB + AC (1)
Tương tự, ta có: 2.BD < AB + BC (2)
2.CE < AC + BC (3)
Cộng từng vế của (1)(2)(3) => 2.(AM + BD + CE) < 2. (AB + BC + CA)
=> AM + BD + CE < AB + BC + CA
*) Chứng minh: \(\frac{3}{4}\)(AB + BC + CA) < AM + BD + CE
+) Xét tam giác AGB có: AG + GB > AB
mà AG = \(\frac{2}{3}\).AM ; BG = \(\frac{2}{3}\).BD (do G là trong tâm tam giác ABC)
=> \(\frac{2}{3}\).(AM + BD) > AB
+) Tương tự, ta có: \(\frac{2}{3}\)(AM + CE) > AC; \(\frac{2}{3}\)(BD + CE) > BC
=> \(\frac{2}{3}\).2. (AM + BD + CE) > AB + BC + CA
<=> \(\frac{4}{3}\) (AM + BD + CE) > AB + BC + CA
=> AM + BD + CE > \(\frac{3}{4}\)(AB + BC + CA)
=> ĐPCM
Xét tam giác ABC như hình vẽ. ta cần chứng minh: 4 3 (AB + BC + CA) < AM + BD + CE < AB + BC + CA *) Chứng minh: AM + BD + CE < AB + BC + CA +) Trên tia đối của tia MA lấy K sao cho MA = MK Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC +) Xét tam giác ABK có: AK < AB +BK mà AK = 2.AM ; BK = AC => 2.AM < AB + AC (1) Tương tự, ta có: 2.BD < AB + BC (2) 2.CE < AC + BC (3) Cộng từng vế của (1)(2)(3) => 2.(AM + BD + CE) < 2. (AB + BC + CA) => AM + BD + CE < AB + BC + CA *) Chứng minh: 4 3 (AB + BC + CA) < AM + BD + CE +) Xét tam giác AGB có: AG + GB > AB mà AG = 3 2 .AM ; BG = 3 2 .BD (do G là trong tâm tam giác ABC) => 3 2 .(AM + BD) > AB +) Tương tự, ta có: 3 2 (AM + CE) > AC; 3 2 (BD + CE) > BC => 3 2 .2. (AM + BD + CE) > AB + BC + CA <=> 3 4 (AM + BD + CE) > AB + BC + CA => AM + BD + CE > 4 3 (AB + BC + CA) => ĐPC
Xét tam giác ABC như hình vẽ. ta cần chứng minh: 4 3 (AB + BC + CA) < AM + BD + CE < AB + BC + CA *) Chứng minh: AM + BD + CE < AB + BC + CA +) Trên tia đối của tia MA lấy K sao cho MA = MK Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC +) Xét tam giác ABK có: AK < AB +BK mà AK = 2.AM ; BK = AC => 2.AM < AB + AC (1) Tương tự, ta có: 2.BD < AB + BC (2) 2.CE < AC + BC (3) Cộng từng vế của (1)(2)(3) => 2.(AM + BD + CE) < 2. (AB + BC + CA) => AM + BD + CE < AB + BC + CA *) Chứng minh: 4 3 (AB + BC + CA) < AM + BD + CE +) Xét tam giác AGB có: AG + GB > AB mà AG = 3 2 .AM ; BG = 3 2 .BD (do G là trong tâm tam giác ABC) => 3 2 .(AM + BD) > AB +) Tương tự, ta có: 3 2 (AM + CE) > AC; 3 2 (BD + CE) > BC => 3 2 .2. (AM + BD + CE) > AB + BC + CA <=> 3 4 (AM + BD + CE) > AB + BC + CA => AM + BD + CE > 4 3 (AB + BC + CA) => ĐPC
Chứng minh răng tổng độ dài đường trung tuyến của 1 tam giác lớn hơn \(\frac{3}{4}\) chu vi và nhỏ hơn chu vi của tam giác ấy
CMR Tổng độ dài 3đường trung tuyến của 1 tam giác lớn hơn 3/4 chu vi và nhỏ hơn chu vi tam giác ấy
Giải thích các bước giải:
Xét tam gíac ABC có các đường trung tuyến AM, BD, CE. Đặt BC= a; AC= c. Theo bài ra ta có: AM< b+c2b+c2
CMTT: BD< a+c2a+c2 ; CE < a+b2a+b2
=>AM+BD+CE < a+b+c
Ta có BD+CE> 3232 a
CMTT ta có:AM+CE > 3232 b
AM+BD>3232 c
=>2(AM+BD+CE) > 3232 (a+b+c)
Do đó : AM+BD+CE > 3434 (a+b+c)
chứng minh rằng : tổng độ dài 3 đường trung tuyến nhỏ hơn chu vi của tam giác ấy
Chứng minh rằng tổng các độ dài ba đường trung tuyến của một tam giác lớn hơn \(\frac{3}{4}\) chu vi và nhỏ hơn chu vi của tam giác ấy.
mấy bạn giải hộ mình nhé.mình se like cho nếu đúng và dễ hiểu ^^
Xét tam giác ABC có các đường trung tuyến AM,BD,CE
Gọi G là trọng tâm
*) Chứng minh: AM + BD + CE < AB + BC + CA
+) Trên tia đối của tia MA lấy K sao cho MA = MK
Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC
+) Xét tam giác ABK có: AK < AB +BK mà AK = 2.AM ; BK = AC
=> 2.AM < AB + AC (1)
Tương tự, ta có: 2.BD < AB + BC (2)
2.CE < AC + BC (3)
Cộng từng vế của (1)(2)(3) => 2.(AM + BD + CE) < 2. (AB + BC + CA)
=> AM + BD + CE < AB + BC + CA
*) Chứng minh: 3/4 (AB + BC + CA) < AM + BD + CE
+) Xét tam giác AGB có: AG + GB > AB
mà AG = 2/3 .AM ; BG = 2/3 .BD (do G là trong tâm tam giác ABC)
=> 2/3 .(AM + BD) > AB
+) Tương tự, ta có: 2/3 (AM + CE) > AC; 2/3 (BD + CE) > BC
=> 2/3 .2. (AM + BD + CE) > AB + BC + CA
<=> 4/3 (AM + BD + CE) > AB + BC + CA
=> AM + BD + CE > 3/4 (AB + BC + CA)
=> ĐPCM
Dạng này hình như lớp 8 mà bạn
bạn zô đây cô loan chỉ tường tận luôn nè http://olm.vn/hoi-dap/question/94245.html
CMR: Tổng độ dài 3đường trung tuyến của 1 tam giác lớn hơn 3/4 chu vi và nhỏ hơn chu vi tam giác ấy
cm rằng tổng độ dài ba đường trung tuyến của 1 tam giác lớn hơn 3/4 chu vi và nhỏ hơn chu vi
Xét tg ABC có các đường trung tuyến AM, BD, CE. Đặt BC= a; AC= c. Theo bài ra ta có: AM< b+c/2
CMTT: BD< a+c/2 ; CE < a+b/2
Suy ra AM+BD+CE < a+b+c
Ta có BD+CE> 3/2 a
CMTT ta có:AM+CE > 3/2 b
AM+BD> 3/2 c
Suy ra 2(AM+BD+CE) > 3/2 ( a+c+c)
Do đó : AM+BD+CE > 3/4 ( a+b+c )