Ôn tập toán 7

CT

CMR tổng độ dài ba đường trung tuyến của một tam giác lớn hơn \(\frac{3}{4}\) chu vi và nhỏ hơn chu vi của tam giác ấy

LO
5 tháng 8 2016 lúc 17:39

Bạn tự vẽ hình nha

Xét tg ABC có các đường trung tuyến AM, BD, CE. Đặt BC= a; AC= c. Theo bài ra ta có: AM< \(\frac{b+c}{2}\) 

CMTT: BD< \(\frac{a+c}{2}\) ; CE < \(\frac{a+b}{2}\) 

Suy ra AM+BD+CE < a+b+c

Ta có BD+CE> \(\frac{3}{2}\) a

CMTT ta có:AM+CE > \(\frac{3}{2}\) b

                    AM+BD> \(\frac{3}{2}\) c

Suy ra 2(AM+BD+CE) > \(\frac{3}{2}\) ( a+c+c)

Do đó : AM+BD+CE > \(\frac{3}{4}\) ( a+b+c )

Bình luận (0)
LH
5 tháng 8 2016 lúc 17:29

*) Chứng minh: AM + BD + CE < AB + BC + CA

+) Trên tia đối của tia MA lấy K sao cho MÃ = MK

Khi đó, dễ dàng => tam giác BMK = CMA (c - g - c) => BK = AC

+) Xét tam giác ABK có: AK < AB +BK mà AK = 2.AM ; BK = AC

=> 2.AM < AB + AC

Tương tự, ta có: 2.BD < AB + BC

2.CE < AC + BC

Cộng từng vế của

=> 2.(AM + BD + CE) < 2. (AB + BC + CA)

=> ÂM + BD + CÉ < AB + BC + CA

*) Chứng minh:

(AB + BC + CA) < AM + BD + CE

+) Xét tam giác AGB có: AG + GB > AB

mà AG = .AM ; BG = .BD (do G là trong tâm tam giác ABC)

.(AM + BD) > AB

+) Tương tự, ta có: 2/3

(AM + CE) > AC; 2/3

(BD + CE) > BC

=> 2/3.2. (AM + BD + CE) > AB + BC + CA

​<=> (ÂM + BD + CE) > AB + BC + CA

=> AM + BD + CE > (AB + BC + CA)

=> ĐPCM 

 

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết
TP
Xem chi tiết
BC
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết