Những câu hỏi liên quan
NL
Xem chi tiết
KK
3 tháng 9 2020 lúc 16:01

Hình vẽ chung cho cả ba bài.

Bài 1:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)

\(\Rightarrow AH^2=144\Rightarrow AH=12\)

\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)

\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)

\(\Rightarrow BC=BH+CH=9+16=25\)

Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.

Bình luận (0)
 Khách vãng lai đã xóa
HC
3 tháng 9 2020 lúc 18:26

Bài 2:                                                    Bài giải

Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)

Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)

\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)

Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

Nếu BH = 16 cm thì CH = 9 cm

\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
3 tháng 9 2020 lúc 20:22

bạn cho mình hỏi tại sao AH=BH.HC??

Bình luận (1)
 Khách vãng lai đã xóa
KC
Xem chi tiết
NT
28 tháng 6 2023 lúc 8:32

Câu 2:

AB/AC=5/6

=>HB/HC=25/36

=>HB/25=HC/36=k

=>HB=25k; HC=36k

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>900k^2=900

=>k=1

=>HB=25cm; HC=36cm

Bình luận (0)
TL
Xem chi tiết
NT
16 tháng 9 2021 lúc 20:37

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=8\left(cm\right)\\AC=6\left(cm\right)\\AH=4,8\left(cm\right)\end{matrix}\right.\)

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

Bình luận (0)
TD
Xem chi tiết
TT
12 tháng 7 2017 lúc 18:02

A B C H

VẼ HÌNH HƠI XẤU THÔNG CẢM NHA

áp dụng hệ thức lượng trong tam giác vuông ABC ta có \(AB\cdot AC=AH\cdot BC\) \(\Rightarrow AH\cdot BC=63\) (1)

áp dụng đl pitagovao tam giác vuông ABC ta có \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{130}\)

thay vao (1) ta co \(AH\cdot BC=63\Rightarrow AH=\frac{63}{\sqrt{130}}\)

Bình luận (0)
PT
12 tháng 7 2017 lúc 19:40

đẹp thế còn gì nữa. 

Bình luận (0)
TD
14 tháng 7 2017 lúc 8:19

cảm ơn

Bình luận (0)
TT
Xem chi tiết
YN
Xem chi tiết

a) Ta có : AH= BH x HC 

=》 256 = 25 x HC 

=》 HC = 10,24

BC = BH +HC = 35,24

Lại có : AB\(^2\)= BH x BC 

=》 AB2 = 25 x 35,24 = 881

=》 AB = \(\sqrt{ }\)881 

Áp dụng định lý Py ta go vào \(\Delta\)ABC có : 

AC+AB2 = BC2

=》 AC2 = 1241,8576 - 881

=》 AC2 = 360,8576 

=》 AC \(\approx\)19 

Bình luận (0)
 Khách vãng lai đã xóa

b) Áp dụng định lý Py ta go vào \(\Delta\)ABH có : 

AB2 = BH2 + AH2 

AH2 = 144 -36 

AH = 6\(\sqrt{ }\)3

Lại có : AB2 = BH x BC 

144 = 6 x BC 

=》 BC = 24

=》 HC = 24 - 6 = 18 

Áp dụng định lý Py ta go vào \(\Delta\)ABC có : 

AB + AC2 = BC2

=》 AC= 576 - 144 

=》 AC = 12\(\sqrt{ }\)3

Bình luận (0)
 Khách vãng lai đã xóa
YN
Xem chi tiết
NH
15 tháng 8 2020 lúc 22:25

a) Áp dụng định lí Py-ta-go vào \(\Delta AHB\) vuông ở \(\widehat{H}\)ta có:

      AB2=AH2+BH2

 => AB=\(\sqrt{16^2+25^2}\)

<=>AB=\(\sqrt{881}\)

  Áp dụng hệ thức 2 vào \(\Delta ABC\)vuông tại \(\widehat{A}\)ta có:

        AH2=BH.CH

<=> 162=25.CH

<=>256=25.CH

  =>CH=\(\frac{256}{25}\)=10,24

  Ta có:BC=BH+CH

     <=>BC=25+\(\frac{256}{25}\)=\(\frac{881}{25}\)=35.24

  Áp dụng định lí Py-ta-go vào \(\Delta ABC\)vuông tại \(\widehat{A}\)ta có:

       BC2=AB2+AC2

<=>AC2=BC2-AB2

  =>AC=\(\sqrt{\left(\sqrt{881}\right)^2-\left(\frac{881}{25}\right)^2}\)=\(-\sqrt{360,8576}\)

b)Áp dụng định lí Py-ta-go vào \(\Delta AHB\)vuông tai \(\widehat{H}\)ta có:

      AB2=AH2+BH2

<=>AH2=AB2-BH2

<=>AH=\(\sqrt{12^2-6^2}\)=\(\sqrt{108}\)

  Áp dụng hệ thức 2 vào \(\Delta ABC\)vuông tai \(\widehat{A}\)ta có:

       AH2=BH.CH

<=>108=36.CH

  =>CH=\(\frac{108}{36}\)=3

 Ta có:BC=BH+CH

   <=> BC=6+3=9

  Áp dụng Py-ta-go vào \(\Delta ABC\)vuông tại \(\widehat{A}\)ta có:

            BC2=AB2+AC2

     <=>AC2=BC2-AB2

      => AC=\(\sqrt{9^2-12^2}\)=\(-\sqrt{63}\)

Nhớ sau mỗi kết quả của phép tính viết "(cùng đơn vị đo)" nhé!

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết
MT
Xem chi tiết
NM
12 tháng 11 2021 lúc 8:49

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\\BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
H24
12 tháng 11 2021 lúc 8:51

Áp dụng PTG ta có: \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{6^2+8^2}=10\)

Áp dụng HTL ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{6.8}{10}=4,8\)

Áp dụng HTL ta có:\(BH.BC=AB^2\Rightarrow BC=\dfrac{6^2}{10}=3,6\)

Áp dụng HTL ta có:\(CH.BC=AC^2\Rightarrow BC=\dfrac{8^2}{10}=6,4\)

Bình luận (0)
H24
Xem chi tiết
MY
10 tháng 8 2021 lúc 17:14

a,

pytago trong tam giác ABH

\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)

dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)

pytago cho tam giác ABC

\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)

\(=>HC=BC-HB=8cm\)

b, pytago cho tam giác AHB

\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)

rồi tính AC , CH làm tương tự bài trên

Bình luận (0)