Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DD
Xem chi tiết
HV
8 tháng 8 2021 lúc 21:47

Ta có: 

x^4+2x^3+2x^2+1

=x^2(x^2+2x+2)+1

Ta thấy x^2(x^2+2x+2)> hoặc =0 nên 

x^2(x^2+2x+2)+1>0 nên ko có nghiệm

Chúc học tốt

Bình luận (0)
 Khách vãng lai đã xóa
TU
Xem chi tiết
TN
Xem chi tiết
VH
9 tháng 4 2021 lúc 20:08

a) A(x) = 0 ⇔ 6 - 2x = 0 ⇔ x = 3

Nghiệm của đa thức là x = 3

b)1. P(1) = \(1^4+2.1^2+1\) = 4

P(\(-\dfrac{1}{2}\)) = \(\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1\) = \(\dfrac{25}{16}\)

Ta có: P(x) = \(\left(x^2+1\right)^2\)

Vì \(\left(x^2+1\right)^2\) ≥ 0 

Nên P(x) = 0 khi \(x^2+1=0\) ⇔ \(x^2=-1\) (vô lý)

Vậy P(x) không có nghiệm

Bình luận (0)
NT
9 tháng 4 2021 lúc 20:13

a) Đặt A(x)=0

\(\Leftrightarrow6-2x=0\)

\(\Leftrightarrow2x=6\)

hay x=3

Vậy: x=3 là nghiệm của đa thức A(x)

Bình luận (0)
NT
9 tháng 4 2021 lúc 20:14

b) 

1: Thay x=1 vào đa thức P(x), ta được:

\(P\left(1\right)=1^4+2\cdot1^2+1=1+2+1=4\)

Thay \(x=-\dfrac{1}{2}\) vào đa thức P(x), ta được:

\(P\left(-\dfrac{1}{2}\right)=\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+1=\dfrac{1}{16}+\dfrac{1}{2}+1=\dfrac{25}{16}\)

Bình luận (0)
TU
Xem chi tiết
NT
16 tháng 4 2017 lúc 11:25

Nghiệm của đa thức một biến

Bình luận (0)
HV
12 tháng 6 2018 lúc 19:28

Ta có nghiệm của đa thức là giá trị của biến làm đa thức có giá trị bằng
Nếu f(a) = 0 => a là nghiệm của f(x).
Do: x.f(x + 1) = (x + 2).f(x) (1) đúng với mọi x.
+ Thay x = 0 vào (1) ta được
0.f(0 + 1) = (0 + 2).f(0)
=> 0 = 2.f(0)
=> f(0) = 0
Do f(0) = 0 => x = 0 là 1 nghiệm của đa thức trên. (2)

+ Thay x = -2 vào (1) ta được:
(-2).f(-2 + 1) = (-2 + 2).f(-2)
=> (-2).f(-1) = 0.f(-2)
=> (-2).f(-1) = 0
=> f(-1) = 0
=> x = -1 là 1 nghiệm của đa thức trên (3)
Từ (2) và (3) => đa thức đã cho có ít nhất 2 nghiệm là x = 0 và x = -2

Bình luận (0)
LM
12 tháng 6 2018 lúc 20:38

thấy xinh ko

Hỏi đáp Toán

Bình luận (1)
NP
Xem chi tiết
RR
13 tháng 5 2018 lúc 9:54

Vì \(H\left(x\right)=2x^2+1\ge1>0\)

Nên đa thức trên vô nghiệm 

Bình luận (0)
NT
13 tháng 5 2018 lúc 10:00

\(2x^2+1\ge1\forall x\)

Vậy đa thức H(x) vô nghiệm 

Bình luận (0)
H24
Xem chi tiết
NT
6 tháng 7 2023 lúc 22:27

\(H\left(x\right)=2^{x^2}+5^{x^3}+3-1-5^{x^3}=2^{x^2}+2>0\forall x\)

=>H(x) ko có nghiệm

Bình luận (0)
TV
Xem chi tiết
NM
31 tháng 3 2020 lúc 8:27

Bài 1:

1. Thay x=-5;y=3 vào P ta được:

P=\(2.\left(-5\right)\left[\left(-5\right)+3-1\right]+\left(3\right)^2+1\)=40

2. P=2x(x+y-1)+y2+1

\(\Leftrightarrow P=2x^2+2xy-2x+y^2+1\)

\(\Leftrightarrow P=\left(x+y\right)^2+(x^2-2.\frac{1}{2}x+\frac{1}{4})+\frac{3}{4}\)

\(\Leftrightarrow P=\left(x+y\right)^2+(x-\frac{1}{2})^2+\frac{3}{4}\) >0 \(\forall x;y\:\)

Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha

Bình luận (0)
 Khách vãng lai đã xóa
NM
31 tháng 3 2020 lúc 8:32

Bài 2:

1. f(x)=g(x)-h(x)=4x2+3x+1-(3x2-2x-3)

\(\Leftrightarrow f\left(x\right)=x^2+5x+4\)

2. Thay x=-4 vào f(x) ta được: f(4)=(-4)2+5(-4)+4=0

Vậy x=-4 là nghiệm của f(x)

3. \(\Leftrightarrow f\left(x\right)=x^2+5x+4\)

\(\Leftrightarrow f\left(x\right)=x\left(x+1\right)+4\left(1+x\right)\)

\(\Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x+1\right)\)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)

Vậy tập hợp nghiệm của f(x) là \(\left\{-4;-1\right\}\)

Bạn tham khảo nha, không hiểu cứ hỏi mình ha

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
H24
Xem chi tiết