giải phương trình: \(\left(2x^2-10x+12\right)\sqrt{\frac{x+2}{x-2}}=-x^3+3x^2+12x-26\)
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
Nhìn không đủ chán rồi không dám động vào
À do nãy máy lag sr :) Chứ bài đặt ẩn phụ mệt lắm :)
Giải phương trình: \(\left(\sqrt{4x^4-12x^3+9x^2+16}-2x^2+3x\right)\left(\sqrt{x+3}+\sqrt{x-1}\right)=8\)
ĐKXĐ: \(x\ge1\).
Phương trình đã cho tương đương:
\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)
\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)
\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)
\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).
Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).
Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).
Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).
Vậy...
Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!
Giải phương trình:
a) \(5x^2-10x=4\left(x-1\right)\sqrt{x^2-2x+2}\)
b) \(\sqrt{2x^2+22x+29}-x-2=2\sqrt{2x+3}\)
c) \(x^3-7x^2+9x+12=\left(x-3\right)\left(x-2+5\sqrt{x-3}\right)\left(\sqrt{x-3}-1\right)\)
Giải phương trình
1, \(x^2+\left(3-\sqrt{x^2+2}\right)x=1+2\sqrt{x^2+2}\)
2, \(10x^2+3x+1=\sqrt{x^2+3}\left(1+6x\right)\)
3, \(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)
4, \(x^2+2x+15=6\sqrt{4x+5}\)
5, \(\sqrt{2x^2+5x+12}-x=5-\sqrt{2x^2+3x+2}\)
1/ Đặt \(\sqrt{x^2+2}=t>0\Rightarrow x^2=t^2-2\)
\(t^2-2+\left(3-t\right)x-1-2t=0\)
\(\Leftrightarrow t^2-2t-3-\left(t-3\right)x=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+1\right)-\left(t-3\right)x=0\)
\(\Leftrightarrow\left(t-3\right)\left(t+1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t-3=0\\t+1-x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=3\left(1\right)\\\sqrt{x^2+2}=x-1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2=7\Rightarrow x=\pm\sqrt{7}\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2+2=\left(x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2+2=x^2-2x+1\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-1}{2}\left(l\right)\)
Vậy nghiệm pt là \(x=\pm\sqrt{7}\)
2/
\(x^2+3-6x\sqrt{x^2+3}+9x^2-\sqrt{x^2+3}+3x-2=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3}-3x\right)^2-\left(\sqrt{x^2+3}-3x\right)-2=0\)
Đặt \(\sqrt{x^2+3}-3x=t\)
\(\Rightarrow t^2-t-2=0\) \(\Rightarrow\left[{}\begin{matrix}t=-1\\t=2\end{matrix}\right.\)
TH1: \(\sqrt{x^2+3}-3x=-1\Rightarrow\sqrt{x^2+3}=3x-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-1\ge0\\x^2+3=\left(3x-1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\8x^2-6x-2=0\end{matrix}\right.\) \(\Rightarrow x=1\)
TH2: \(\sqrt{x^2+3}-3x=2\Leftrightarrow\sqrt{x^2+3}=3x+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\x^2+3=\left(3x+2\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-2}{3}\\8x^2+12x+1=0\end{matrix}\right.\) \(\Rightarrow x=\dfrac{-3+\sqrt{7}}{4}\)
3/ ĐKXĐ: \(\dfrac{3}{2}\le x\le\dfrac{5}{2}\)
\(1.\sqrt{2x-3}+1.\sqrt{5-2x}\le\sqrt{\left(1^2+1^2\right)\left(2x-3+5-2x\right)}=2\)
\(\Rightarrow VT\le2\)
\(VP=3\left(x^2-4x+4\right)+2=3\left(x-2\right)^2+2\ge2\)
\(\Rightarrow VT=VP\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2x-3=5-2x\end{matrix}\right.\) \(\Rightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
4/
ĐKXĐ: \(x\ge\dfrac{-5}{4}\)
\(x^2-2x+1+4x+5-6\sqrt{4x+5}+9=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{4x+5}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{4x+5}-3=0\end{matrix}\right.\) \(\Rightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
5/
\(\sqrt{2x^2+5x+12}+\sqrt{2x^2+3x+2}-\left(x+5\right)=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+5x+12}=a>0\\\sqrt{2x^2+3x+2}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=2x+10=2\left(x+5\right)\)
\(\Rightarrow x+5=\dfrac{a^2-b^2}{2}\)
Phương trình đã cho trở thành:
\(a+b-\left(x+5\right)=0\) (1)
\(\Leftrightarrow a+b-\dfrac{a^2-b^2}{2}=0\Leftrightarrow2\left(a+b\right)-\left(a+b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(2-a+b\right)=0\Rightarrow2-a+b=0\) (2) (do \(a+b>0\))
Từ (1), (2) có hệ: \(\left\{{}\begin{matrix}a+b=x+5\\2-a+b=0\end{matrix}\right.\) \(\Rightarrow2b+2=x+5\Rightarrow2b=x+3\)
\(\Rightarrow2\sqrt{2x^2+3x+2}=x+3\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\4\left(2x^2+3x+2\right)=\left(x+3\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\7x^2+6x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{7}\end{matrix}\right.\)
Giải phương trình sau
1. \(5x^2-16x+7+\left(x+1\right)\sqrt{x^2+3x-1}=0\)
2. \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\left(\frac{2x-1}{2-x}+2\sqrt{2-x}\right)^3=27\left(2x-1\right)\)
Giải phương trình nghiệm nguyên sau:
\(3x^3-13x^2+30x-4=\sqrt{\left(6x+2\right)\left(3x-4\right)^3}\)
Giải phương trình: \(7x^2-12x+8=2x^2\sqrt[3]{x\left(1+3x-3x^2\right)}\)
Giải phương trình
\(\left(x+3\right)\sqrt{\left(4-x\right)\left(12+x\right)}=28-x\)
\(\sqrt{3x^3-5x^2+5x+5x-2}=\frac{x^2}{2}+x-\frac{1}{2}\)
\(\sqrt{x-2}+\sqrt{10-x}=x^2-12x+40\)
Giải phương trình \(\left(x+2\right)\sqrt{3-2x}=12x^2-10x+\sqrt{3-2x}\)
Lời giải:
ĐK: $x\leq \frac{3}{2}$
Đặt $\sqrt{3-2x}=a(a\geq 0)$ thì $2x=3-a^2$
PT $\Leftrightarrow (2x+2)\sqrt{3-2x}=24x^2-20x$
$\Leftrightarrow (5-a^2)a=6(3-a^2)^2-10(3-a^2)$
$\Leftrightarrow 6a^4+a^3-26a^2-5a+24=0$
$\Leftrightarrow (a-1)(6a^3+7a^2-19a-24)=0$
$\Leftrightarrow (a-1)(2a+3)(3a^2-a-8)=0$
Vì $a\geq 0$ nên $a=1$ hoặc $a=\frac{1+\sqrt{97}}{6}$
Thay vào thu được $x=1$ hoặc $x=\frac{5-\sqrt{97}}{36}$
Giải các phương trình sau:
1) \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
2) \(x^2-2x-12+4\sqrt{\left(4-x\right)\left(2+x\right)}=0\)
3) \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}=2x+\dfrac{1}{2x}-7\)
4) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
5)\(\left(x-7\right)\sqrt{\dfrac{x+3}{x-7}}=x+4\)
6) \(2\sqrt{x-4}+\sqrt{x-1}=\sqrt{2x-3}+\sqrt{4x-16}\)
7) \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\dfrac{x+3}{2}\)
Giúp mình với ajk, mink đang cần gấp