Những câu hỏi liên quan
QH
Xem chi tiết
CL
Xem chi tiết
H24
18 tháng 11 2021 lúc 20:48

5cm

Bình luận (0)
H24
18 tháng 11 2021 lúc 20:51

D

Bình luận (0)
CL
18 tháng 11 2021 lúc 20:52

5 cm nha bạn

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 6 2019 lúc 3:52

Bình luận (0)
0D
11 tháng 4 2022 lúc 20:20

Cho tam giác ABC cân ở A, đường trung tuyến AM.
a) Chứng minh AM BC 
b) Tính AM biết rằng AB cm BC cm   10 , 12

Bình luận (0)
NT
Xem chi tiết
PB
Xem chi tiết
CT
14 tháng 11 2017 lúc 15:11

Bình luận (0)
LT
Xem chi tiết
H24
28 tháng 7 2023 lúc 10:42

Vì `\triangle ABC` vuông tại `A` có `AM` là đường trung tuyến

    `=>AM=MC=1/2BC =>BC =40(cm)`

`@` Xét `\triangle ABC` vuông tại `A` có: `AC=\sqrt{BC^2 -AB^2}=32(cm)` (Py-ta-go)

`@` Mặt khác: Ta có `AH` là đường cao

    `=>BH=[AB^2]/[BC]` (Ht giữa cạnh và đường cao)

   `=>BH =14,4(cm)`

`@` Ta có: `HM =BC-BH-MC=5,6(cm)`

Bình luận (0)
0A
Xem chi tiết
H24
21 tháng 3 2022 lúc 20:54

C

Bình luận (0)
H24
21 tháng 3 2022 lúc 20:54

C

Bình luận (2)
KK
21 tháng 3 2022 lúc 20:55

C

Bình luận (0)
NK
Xem chi tiết
NL
25 tháng 7 2021 lúc 13:49

Áp dụng định lý Pitago:

\(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

Áp dụng hệ thức lượng:

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=12\left(cm\right)\)

Do AM là trung tuyến ứng với cạnh huyền

\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{25}{2}=12,5\left(cm\right)\)

Bình luận (0)
NT
25 tháng 7 2021 lúc 13:52

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(BC^2=225+400=625\Rightarrow BC=25\)cm 

Xét tam giác ABC, đường cao AH 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{300}{25}=12\)cm 

Vì AM là đường trung tuyến suy ra : \(AM=\dfrac{BC}{2}=\dfrac{25}{2}\)cm 

Bình luận (0)
NT
25 tháng 7 2021 lúc 21:52

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot25=15\cdot20=300\)

hay AH=12(cm)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(AM=\dfrac{BC}{2}=\dfrac{25}{2}=12.5\left(cm\right)\)

Bình luận (0)
H24
Xem chi tiết