rút gọn A=\(\frac{1-sin^2a}{cosa+sina}+\frac{2cos^2a-1}{cosa-sina}\)
Rút gọn các BT:
1) cos^2x+cos^2x.tan^2x
2) \(\frac{2cos^2a-1}{sina+cosa}\)
3) \(\frac{1-2sin^2a}{sina-cosa}\)
4) \(\frac{1+sina}{1-sina}-\frac{1-sina}{1+sina}\)
Lời giải:
1.
\(\cos ^2x+\cos ^2x\tan ^2x=\cos ^2x+\cos ^2x.(\frac{\sin x}{\cos x})^2\)
\(=\cos ^2x+\sin ^2x=1\)
2.
\(\frac{2\cos ^2a-1}{\sin a+\cos a}=\frac{2\cos ^2a-(\sin ^2a+\cos ^2a)}{\sin a+\cos a}=\frac{\cos ^2a-\sin ^2a}{\sin a+\cos a}=\frac{(\cos a-\sin a)(\cos a+\sin a)}{\sin a+\cos a}\)
\(=\cos a-\sin a\)
3.
\(\frac{1-2\sin ^2a}{\sin a-\cos a}=\frac{\cos ^2a+\sin ^2a-2\sin ^2a}{\sin a-\cos a}=\frac{\cos ^2a-\sin ^2a}{\sin a-\cos a}\)
\(=\frac{(\cos a-\sin a)(\cos a+\sin a)}{\sin a-\cos a}=-(\cos a+\sin a)\)
4.
\(\frac{1+\sin a}{1-\sin a}-\frac{1-\sin a}{1+\sin a}=\frac{(1+\sin a)^2-(1-\sin a)^2}{(1-\sin a)(1+\sin a)}\)
\(=\frac{1+\sin ^2a+2\sin a-(1+\sin ^2a-2\sin a)}{1-\sin ^2a}=\frac{4\sin a}{\cos ^2a}=\frac{4\tan a}{\cos a}\)
Chứng minh các đẳng thức sau:
a.\(\frac{1+sin^2x}{1-sin^{2^{ }}x}=1+2tan^2x\)
b.\(\frac{sin^3a-cos^3a}{sina-cosa}-sina.cosa=1\)
c.\(\frac{1+cosx+cos2x+cos3x}{2cos^2x+cosx-1}=2cosx\)
e.\(\frac{1-2sin^2a}{cosa+sina}+\frac{2cos^2a-1}{cosa-sina}=2cosa\)
d.\(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
MỌI NGƯỜI GIÚP MÌNH VỚI .MÌNH CẢM ƠN RẤT NHIỀU
\(\frac{1+sin^2x}{1-sin^2x}=\frac{1+sin^2x}{cos^2x}=\frac{1}{cos^2x}+\frac{sin^2x}{cos^2x}=1+tan^2x+tan^2x=1+2tan^2x\)
\(\frac{sin^3a-cos^3a}{sina-cosa}-sina.cosa=\frac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)}{sina-cosa}-sina.cosa\)
\(=sin^2a+cos^2a+sina.cosa-sina.cosa=1\)
\(\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cosx.cos2x}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(\frac{1-2sin^2a}{cosa+sina}+\frac{2cos^2a-1}{cosa-sina}=\frac{cos^2a-sin^2a}{cosa+sina}+\frac{cos^2a-sin^2a}{cosa-sina}\)
\(=\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa+sina}+\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa-sina}=cosa-sina+cosa+sina=2cosa\)
\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)
Cho 0<a<90.CM các hệ sau
a)\(\frac{sin^2a-cos^2a+cos^4a}{cos^2a-sin^2a+sin^4a}=tan^4a\)
b)\(\frac{1-4sin^2a.cos^2a}{\left(sina+cosa\right)^2}=\left(sina-cosa\right)^2\)
1. Chứng minh các đẳng thức sau :
a. \(\frac{1+sin^2a}{1-sin^2a}=2tan^2a+1\) b.\(\frac{cosa}{1+tana}+tana=\frac{1}{cosa}\)
c. \(\frac{sina}{1+cosa}+\frac{1+cosa}{sina}=\frac{2}{sina}\) d. \(\frac{tana}{1-tan^2a}.\frac{cot^2a-1}{cota}=1\)
2. Cho tanx = 3. Tính số trị của các biểu thức sau :
B = \(\frac{sin^2x-6sinx.cosx+2cos^2x}{sin^2x-2sinx.cosx}\) C = \(\frac{\tan x-2cot^2x}{1-cotx-cot^2x}\)
3.Cho sina + cosa = \(\sqrt{2}\) .Tính số trị các biểu thức :
P = sina.cosa Q = sin4a + cos4a R = sin3a + cos3a
\(sina+cosa=\sqrt{2}\Leftrightarrow\left(sina+cosa\right)^2=2\\ \)
\(\Leftrightarrow\sin^2a+2\sin a.cosa+cos^2a=2\)
\(\Leftrightarrow1+2.sina.cosa=2\)
\(\Leftrightarrow2.sina.cosa=2-1=1\)
\(\Leftrightarrow\sin a.cosa=\frac{1}{2}\)
Vậy P=sina.cosa=\(\frac{1}{2}\)
\(Q=\sin^4a+cos^4a\)
\(\Leftrightarrow\left(sin^2a\right)^2+\left(cos^2a\right)^2\)
\(\Leftrightarrow\left(sin^2a+cos^2a\right)^2-2.sin^2a.cos^2a\)
\(\Leftrightarrow1^2-2.sin^2a.cos^2a\) tách tiếp rồi thế vào là được .tương tự phàn P ý
còn R thì tách sin^3a=sin^2a+sina tương tự cos mũ 3 a cụng vậy
theo tớ là như thế còn có sai thì đừng có ném đá ném gạch na
Chứng minh các công thức sau:
a) tana=\(\frac{sina}{cosa}\) b)cot ga=\(\frac{cosa}{sina}\) c)tana.cot ga=1
d) \(^{sin^2a+cos^2a=1}\)
e) \(1+tan^2a=\frac{1}{cos^2a}\)
f)\(1+cotg^2a=\frac{1}{sin^2a}\)
Xét ΔBAC vuông tại B có a = ^A ta có :
a) \(\frac{\sin\alpha}{\cos\alpha}=\frac{\sin A}{\cos A}=\frac{\frac{BC}{AB}}{\frac{AB}{AC}}=\frac{BC}{AB}\cdot\frac{AC}{AB}=\frac{BC}{AB}=\tan A=\tan\alpha\left(đpcm\right)\)
b) \(\frac{\cos\alpha}{\sin\alpha}=\frac{\cos A}{\sin A}=\frac{\frac{AB}{AC}}{\frac{BC}{AC}}=\frac{AB}{AC}\cdot\frac{AC}{BC}=\frac{AB}{BC}=\cot A=\cot\alpha\left(đpcm\right)\)
c) \(\tan\alpha\cdot\cot\alpha=\tan A\cdot\cot A=\frac{BC}{AB}\cdot\frac{AB}{BC}=1\left(đpcm\right)\)
d) \(\sin^2\alpha+\cos^2\alpha=\sin^2A+\cos^2A=\frac{BC^2}{AC^2}+\frac{AB^2}{AC^2}=\frac{AB^2+BC^2}{AC^2}=1\left(đpcm\right)\)
e) \(\frac{1}{\cos^2\alpha}=\frac{1}{\cos^2A}=\frac{1}{\frac{AB^2}{AC^2}}=\frac{AC^2}{AB^2};1+\tan^2\alpha=1+\tan^2A=1+\frac{BC^2}{AB^2}=\frac{AB^2+BC^2}{AB^2}=\frac{AC^2}{AB^2}\)
\(\Rightarrow1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\left(đpcm\right)\)
f) \(\frac{1}{\sin^2\alpha}=\frac{1}{\sin^2A}=\frac{1}{\frac{BC^2}{AC^2}}=\frac{AC^2}{BC^2};1+\cot^2\alpha=1+\cot^2A=1+\frac{AB^2}{BC^2}=\frac{BC^2+AB^2}{BC^2}=\frac{AC^2}{BC^2}\)
\(\Rightarrow1+\cot^2\alpha=\frac{1}{\sin^2\alpha}\left(đpcm\right)\)
a) Rút gọn \(P=cos^2a+cos^2a.cot^2a\) ( 0 độ < a < 90 độ )
b) Rút gọn \(M=\frac{2cos^2a-1}{sina+cosa}\)
\(P=cos^2a\left(1+cot^2a\right)=\dfrac{cos^2a}{sin^2a}=cot^2a\)
\(M=\dfrac{2cos^2a-\left(sin^2a+cos^2a\right)}{sina+cosa}=\dfrac{cos^2a-sin^2a}{sina+cosa}\)
\(=\dfrac{\left(cosa-sina\right)\left(cosa+sina\right)}{sina+cosa}=cosa-sina\)
Rút gọn
a) A= \(\frac{4sin^2a}{1-cos^2\frac{a}{2}}\)
b) B= \(\frac{1+cosa-sina
}{1-cosa-sina}\)
c) C= \(\frac{1+sina-2sin^2\left(45-\frac{\pi}{2}\right)}{4cos\frac{a}{2}}\)
Lời giải:
a)
\(A=\frac{4\sin ^2a}{1-\cos ^2\frac{a}{2}}=\frac{4\sin ^2a}{\sin ^2\frac{a}{2}}=\frac{4(2\sin \frac{a}{2}\cos \frac{a}{2})^2}{\sin ^2\frac{a}{2}}=16\cos ^2\frac{a}{2}\)
b)
Sử dụng công thức: \(1-\cos 2a=2\sin ^2a; 1+\cos 2a=2\cos ^2a\) và \(\sin 2a=2\sin a\cos a\) ta có:
\(B=\frac{1+\cos a-\sin a}{1-\cos a-\sin a}=\frac{2\cos ^2\frac{a}{2}-2\sin \frac{a}{2}\cos \frac{a}{2}}{2\sin ^2\frac{a}{2}-2\sin \frac{a}{2}.\cos \frac{a}{2}}\)
\(=\frac{2\cos \frac{a}{2}(\cos \frac{a}{2}-\sin \frac{a}{2})}{2\sin \frac{a}{2}(\sin \frac{a}{2}-\cos \frac{a}{2})}\)
\(=\frac{-\cos \frac{a}{2}}{\sin \frac{a}{2}}=-\cot \frac{a}{2}\)
c) \(45-\frac{\pi}{2}\)??? sao đơn vị nó không thống nhất vậy?
rút gọn:
a, A=\(\frac{sina+sin2a+sin3a}{cosa+cos2a+cos3a}\)
b, B=\(\frac{sin^2a+sin^2a.tan^2a}{cos^2a+cos^2a.cot^2a}\)
\(A=\frac{sina+sin3a+sin2a}{cosa+cos3a+cos2a}=\frac{2sin2a.cosa+sin2a}{2cos2a.cosa+cos2a}=\frac{sin2a\left(2cosa+1\right)}{cos2a\left(2cosa+1\right)}=\frac{sin2a}{cos2a}=tan2a\)
\(B=\frac{sin^2a\left(1+tan^2a\right)}{cos^2a\left(1+cot^2a\right)}=\frac{sin^2a.\frac{1}{cos^2a}}{cos^2a.\frac{1}{sin^2a}}=\frac{sin^4a}{cos^4a}=tan^4a\)
Rút gọn \(\dfrac{2Cos^2a-1}{Sina+Cosa}\)
\(=\dfrac{2cos^2\alpha-sin^2a-cos^2a}{sin\alpha+cos\alpha}=\dfrac{cos^2a-sin^2a}{cosa+sina}\)
\(=\dfrac{(cosa-sina)\left(cosa+sina\right)}{cosa+sina}=cosa-sina\)