Tìm GTNN của:
A= \(x^2+2y^2+3x-y+6\)
B= \(\frac{x^2-1}{x^2+1}\)
C= \(\frac{x^2-3x+3}{x^2-2x+1}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm GTNN của : |3x-7|+|3x-2|+8
cho x-y =2 . Tìm GTNN của biểu thức B= |2x+1|=|2y+1|
tìm GTLN của : x+\(\frac{1}{2}\)-|x-\(\frac{2}{3}\)|
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
Tìm GTNN của:
A= \(x^2+2y^2+3x-y+6\)
B= \(\frac{x^2-1}{x^2+1}\)
C= \(\frac{x^2-3x+3}{x^2-2x+1}\)
Lời giải:
$A=x^2+2y^2+3x-y+6$
$\Leftrightarrow x^2+3x+(2y^2-y+6-A)=0(*)$
Coi đây là PT bậc 2 ẩn $x$
Vì $A$ xác định nên $(*)$ luôn có nghiệm.
$\Rightarrow \Delta'=9-4(2y^2-y+6-A)\geq 0$
$\Leftrightarrow A\geq 8y^2-4y+15$
Mà $8y^2-4y+15=8(y-\frac{1}{4})^2+\frac{29}{2}\geq \frac{29}{2}$
$\Rightarrow A\geq \frac{29}{2}$ hay $A_{\min}=\frac{29}{2}$
------------------
\(B=\frac{x^2-1}{x^2+1}=1-\frac{2}{x^2+1}\)
$x^2\geq 0\Rightarrow x^2+1\geq 1\Rightarrow \frac{2}{x^2+1}\leq 2$
$\Rightarrow B=1-\frac{2}{x^2+1}\geq 1-2=-1$
Vậy $B_{\min}=-1$
-------------
ĐK: $x\neq 1$
\(C=\frac{x^2-3x+3}{x^2-2x+1}=\frac{x^2-2x+1-(x-1)+1}{x^2-2x+1}=1-\frac{1}{x-1}+\frac{1}{(x-1)^2}\)
\(=\left(\frac{1}{x-1}-\frac{1}{2}\right)^2+\frac{3}{4}\geq \frac{3}{4}\)
Vậy $C_{\min}=\frac{3}{4}$
\(C=\frac{x^2-3x+3}{x^2-2x+1}=\frac{x^2-2x+1-x+1+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)^2-\left(x-1\right)+1}{\left(x-1\right)^2}=1-\frac{1}{x-1}+\frac{1}{\left(x-1\right)^2}\)
Đặt \(\frac{1}{x-1}=c\)
\(\Rightarrow\) \(C=c^2-c+1\)
\(=c^2-2.c.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(c-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\) \(\forall c\)
Vậy GTNN của C là \(\frac{3}{4}\)
Dấu '' = '' xảy ra khi \(c=\frac{1}{2}\Leftrightarrow\frac{1}{x-1}=\frac{1}{2}\Leftrightarrow3\)
bài 1: Thực hiện các phép tính
a.\(\frac{4x-1}{3x^2y}-\frac{7x-2}{3x^2y}\)
b.\(\frac{4x+1}{2}-\frac{3x+2}{3}\)
c.\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
d.\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
e. \(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
f..\(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}\)
g. \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
h.\(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)
i.\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
Tính
a) \(\frac{x^3+1}{x}.\left(\frac{1}{x+1}+\frac{x-1}{x^2-x+1}\right)\)
b) \(\frac{x^3-3x^2+2x}{3x^2-4x+1}.\left(\frac{x-1}{x}-\frac{2x-6}{x-1}+\frac{x+1}{x-2}\right)\)
c) \(\frac{3x-3y}{2x^2-2xy+2y^2}:\frac{6x^2-12xy+6y^2}{5x^3+5y^3}:\frac{5x}{x-y}\)
a)\(ĐKXĐ:x\ne0;-1\)
Ta có:\(\frac{x^3+1}{x}.\left(\frac{1}{x+1}+\frac{x-1}{x^2-x+1}\right)=\frac{x^3+1}{x}.\frac{\left(x^2-x+1\right)+\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^3+1}{x}.\frac{x^2-x+1+\left(x^2-1\right)}{x^3+1}=\frac{2x^2-x}{x}=\frac{2x\left(x-1\right)}{x}=2\left(x-1\right)\)
giúp mình với
làm phép tính
c) \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{3x-6}{4-9x^2}\)
d) x - 2 \(-\frac{x^2-10}{x+2}\)
e)\(\frac{1}{2x-2y}-\frac{1}{2x+2y}+\frac{y}{y^2-x^2}\)
g)\(\frac{4-2x+x^2}{x+2}-2-x\)
i)\(\frac{1}{2x+3}-\frac{1}{2x-3}+\frac{x-2}{2x^2-x-3}\)
c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)
d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)
e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=0\)
bài 1 : thực hiện các phép tính
a. \(\frac{4x-1}{3x^2y}-\frac{7x-1}{3x^2y}\)
b.\(\frac{4x+1}{2}-\frac{3x+2}{3}\)
c.\(\frac{5x^2-y^2}{xy}-\frac{3x-2y}{y}\)
d.\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
e.\(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
f.\(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}\)
g.\(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
h.\(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)
i.\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
Cho x >0 thoả mãn: x^2 -3x-1 và x+y=1.Tìm GTNN:
A= x^2 +y^2 C=\(\frac{1}{x+2y}+\frac{1}{2x+y}\)
B=3x^2+3y^2+4xy. D=\(\frac{1}{x^2}+\frac{2}{xy}\)
MIk CHỈ GIẢI A VÀ B THÔI NHÉ!! NẾU SAI MONG CÁC BẠN THÔNG CẢM!!
A= \(\left(x+y\right)^2-2xy\ge-2xy\)
B= \(3\left(x^2+y^2\right)+4xy=3\left[\left(x+y\right)^2-2xy\right]+4xy\)
= \(3\left(x+y\right)^2-6xy+4xy=3\left(x+y\right)^2-2xy\ge-6xy\)( DO TỚ LẤY 3 NHÂN VỚI -2 NHA)
VẬY GTNN CỦA A VÀ B LẦN LƯỢT LÀ -2XY VÀ -6XY (ĐỀU TMĐK)
thực hiện phép tính
a) (x3+8y3):(2y+x) b.\(\frac{a-1}{2\left(a-4\right)}+\frac{a}{a-4}\) c. (x3+3x2y+3xy2+y3):(2x+2y)
d. (x-5)2+(7-x)(x+2) e.\(\frac{3x}{x-2}-\frac{2x+1}{2-x}\) f. \(\left(\frac{x+2}{x+1}-\frac{2x}{x-1}\right)\cdot\frac{3x+3}{x}+\frac{4x^2+x+7}{x^2-x}\)
g.\(\left(\frac{1}{x+1}-\frac{3}{x^{3^{ }}+1}+\frac{3}{x^2-x+1}\right)\cdot\left(\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}\right)\) h.\(\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{3x+6}{4-9x^2}\)
Nguyễn Nam giúp giùm
) \(\dfrac{x^3+8y^3}{2y+x}\)
\(=\dfrac{x^3+\left(2y\right)^3}{x+2y}\)
\(=\dfrac{\left(x+2y\right)\left[x^2+x.2y+\left(2y\right)^2\right]}{x+2y}\)
\(=x^2+2xy+4y^2\)
b) \(\dfrac{a-1}{2\left(a-4\right)}+\dfrac{a}{a-4}\) MTC: \(2\left(a-4\right)\)
\(=\dfrac{a-1}{2\left(a-4\right)}+\dfrac{2a}{2\left(a-4\right)}\)
\(=\dfrac{a-1+2a}{2\left(a-4\right)}\)
\(=\dfrac{3a-1}{2\left(a-4\right)}\)
c) \(\dfrac{x^3+3x^2y+3xy^2+y^3}{2x+2y}\)
\(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2}\)
d) \(\left(x-5\right)^2+\left(7-x\right)\left(x+2\right)\)
\(=\left(x^2-2.x.5+5^2\right)+\left(7x+14-x^2-2x\right)\)
\(=x^2-10x+25+7x+14-x^2-2x\)
\(=39-5x\)
e) \(\dfrac{3x}{x-2}-\dfrac{2x+1}{2-x}\)
\(=\dfrac{3x}{x-2}+\dfrac{2x+1}{x-2}\)
\(=\dfrac{3x+2x+1}{x-2}\)
\(=\dfrac{5x+1}{x-2}\)
h) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x+6}{4-9x^2}\)
\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{9x^2-4}\)
\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\) MTC: \(\left(3x-2\right)\left(3x+2\right)\)
\(=\dfrac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{\left(3x+2\right)-\left(3x-2\right)+\left(3x+6\right)}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-3x+2+3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+10}{\left(3x-2\right)\left(3x+2\right)}\)
1. Thực hiện phép tính:
a) \(\frac{1-3x}{2x}+\frac{3x-2}{2x-1}+\frac{3x-2}{2x-4}\)
b) \(\frac{1}{x^2+6x+y}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
c) \(\frac{x^2+2}{x^3-1}+\frac{2}{x^2+x+1}+\frac{1}{1-x}\)
d) \(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}\)
a)có khả năng sai đề bài
b)Liệu có sai đề bài không
c)\(=\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)(phân số cuối có âm vì (1-x)=-(x-1)
\(=\frac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)(Hơi tắt)
\(=\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{1}{x^2+x+1}\)
d)\(=\frac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{x^2+2xy+x^2-2xy+4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x^2+4xy}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x}{x-2y}\)