Violympic toán 8

TP

Tìm GTNN của:

A= \(x^2+2y^2+3x-y+6\)

B= \(\frac{x^2-1}{x^2+1}\)

C= \(\frac{x^2-3x+3}{x^2-2x+1}\)

AH
26 tháng 6 2020 lúc 20:52

Lời giải:
$A=x^2+2y^2+3x-y+6$

$\Leftrightarrow x^2+3x+(2y^2-y+6-A)=0(*)$

Coi đây là PT bậc 2 ẩn $x$

Vì $A$ xác định nên $(*)$ luôn có nghiệm.

$\Rightarrow \Delta'=9-4(2y^2-y+6-A)\geq 0$

$\Leftrightarrow A\geq 8y^2-4y+15$

Mà $8y^2-4y+15=8(y-\frac{1}{4})^2+\frac{29}{2}\geq \frac{29}{2}$

$\Rightarrow A\geq \frac{29}{2}$ hay $A_{\min}=\frac{29}{2}$
------------------

\(B=\frac{x^2-1}{x^2+1}=1-\frac{2}{x^2+1}\)

$x^2\geq 0\Rightarrow x^2+1\geq 1\Rightarrow \frac{2}{x^2+1}\leq 2$

$\Rightarrow B=1-\frac{2}{x^2+1}\geq 1-2=-1$

Vậy $B_{\min}=-1$

-------------

ĐK: $x\neq 1$

\(C=\frac{x^2-3x+3}{x^2-2x+1}=\frac{x^2-2x+1-(x-1)+1}{x^2-2x+1}=1-\frac{1}{x-1}+\frac{1}{(x-1)^2}\)

\(=\left(\frac{1}{x-1}-\frac{1}{2}\right)^2+\frac{3}{4}\geq \frac{3}{4}\)

Vậy $C_{\min}=\frac{3}{4}$

Bình luận (0)
NH
26 tháng 6 2020 lúc 21:00

\(C=\frac{x^2-3x+3}{x^2-2x+1}=\frac{x^2-2x+1-x+1+1}{\left(x-1\right)^2}\)

\(=\frac{\left(x-1\right)^2-\left(x-1\right)+1}{\left(x-1\right)^2}=1-\frac{1}{x-1}+\frac{1}{\left(x-1\right)^2}\)

Đặt \(\frac{1}{x-1}=c\)

\(\Rightarrow\) \(C=c^2-c+1\)

\(=c^2-2.c.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(c-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\) \(\forall c\)

Vậy GTNN của C là \(\frac{3}{4}\)

Dấu '' = '' xảy ra khi \(c=\frac{1}{2}\Leftrightarrow\frac{1}{x-1}=\frac{1}{2}\Leftrightarrow3\)

Bình luận (0)

Các câu hỏi tương tự
LD
Xem chi tiết
LD
Xem chi tiết
MT
Xem chi tiết
HA
Xem chi tiết
LD
Xem chi tiết
LT
Xem chi tiết
NN
Xem chi tiết
CV
Xem chi tiết
LT
Xem chi tiết