\(\left(x-\frac{1}{2}\right)\left(2x+5\right)=0\)
Bài 1:Giải phương trình
a)\(10x^2-5x\left(2x+3\right)=15\)
b)\(3x-7-\left(3-4x\right)\left(2x+1\right)=4x\left(2x-7\right)\)
c)\(\left(4x-5\right)^2-\left(7-2x\right)=4\left(2x-4\right)^2+6x\)
Bài 2:Giải phương trình
a)\(\frac{3\left(x-1\right)}{2}+4=\frac{2x}{3}+\frac{4-5x}{6}\)
b)\(\frac{4-x}{7}-\frac{1}{7}\left(\frac{7+3x}{9}+\frac{5-2x}{2}\right)=4-\frac{4x}{3}\)
c)\(\frac{2}{9}\left(2x-5\right)-\frac{5}{3}\left[\left(x-2\right)-\frac{7}{12}\right]=\frac{3}{4}\left(x-3\right)\)
Bài 3:Giải phương trình
a)\(\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\)
b)\(2x\left(x-3\right)+5\left(x-3\right)=0\)
c)\(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
Bài 4:Tìm m để phương trình sau có nghiệm bằng 7:\(\left(2m-5\right)x-2m^2+8=43\)
Bài 5:Giải phương trình
a)\(\left(2x-1\right)^2-\left(2x+1\right)^2=0\)
b)\(\frac{1}{27}\left(x-3\right)^3-\frac{1}{125}\left(x-5\right)^3=0\)
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
Bài 4 xem lại đề nhé bác
Tìm x và y biết:
d)\(-1\frac{2}{3}-\left(\left|2x\right|+\frac{5}{6}\right)=\)\(-2\)e)\(\left(-\frac{1}{2}+\frac{1}{3}\right):\left|1-2x\right|-1\frac{1}{4}:\left(-\frac{5}{8}\right).\left(-\frac{1}{2}\right)^2=\frac{1}{3}\)
c)\(\left|2x-1\right|+\left|2y+1\right|+\left|2x-y\right|=0\)b)\(\left|2x-1\right|=2x-1\)
a)\(\left|x-3\right|=x+4\)
\(\frac{1}{4}+\frac{1}{3}:\left(2x-1\right)=-5\)
\(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=-x+\frac{1}{5}\)
\(\left(2x-3\right)\left(6-2x\right)=0\)
\(\left(2x-3\right)\left(6-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1,5\\x=3\end{matrix}\right.\)
*\(\frac{1}{4}+\frac{1}{3}:\left(2x-1\right)=-5\)
\(\Leftrightarrow\frac{1}{3}\cdot\frac{1}{2x-1}=-5-\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{3\left(2x-1\right)}=\frac{-21}{4}\)
\(\Leftrightarrow-63\left(2x-1\right)=4\)
\(\Leftrightarrow2x-1=-\frac{4}{63}\)
\(\Leftrightarrow2x=\frac{59}{63}\)
\(x=\frac{59}{126}\)
\(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=-x+\frac{1}{5}\)
\(\Leftrightarrow3x-\frac{3}{2}-5x-3+x-\frac{1}{5}=0\)
\(\Leftrightarrow-x-\frac{47}{10}=0\)
\(\Leftrightarrow-x=\frac{47}{10}\)
\(x=-\frac{47}{10}\)
3) \(\frac{x-2}{x-5}\) \(-\frac{5}{x^2-5x}=\frac{1}{x}\)
\(\Leftrightarrow\) \(\frac{x-2}{x-5}-\frac{5}{x.\left(x-5\right)}=\frac{1}{x}\)
\(\Leftrightarrow\frac{\left(x-2\right).\left(x+5\right)}{x.\left(x-5\right)}-\frac{5}{x.\left(x-5\right)}=\frac{1.\left(x+5\right)}{x.\left(x-5\right)}\)
\(\Leftrightarrow x^2+5x-2x-10-5=1x+5\)
\(\Leftrightarrow x^2+5x-2x-1x-10-5-5\) = 0
\(\Leftrightarrow\) \(x^2+2x-20=0\)
\(\Leftrightarrow x^2+2x-10x-20=0\)
\(\Leftrightarrow\) (x\(^2\) + 2x) - (10x + 20) = 0
\(\Leftrightarrow\) x.(x + 2) - 10.(x + 2) = 0
\(\Leftrightarrow\)
4) \(\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x^2+7x}\)
\(\Leftrightarrow\frac{x-4}{x+7}-\frac{1}{x}=\frac{-7}{x\left(x+7\right)}\)
\(\Leftrightarrow\frac{\left(x-4\right).\left(x+7\right)}{x.\left(x+7\right)}-\frac{1.\left(x+7\right)}{x.\left(x+7\right)}=\frac{-7}{x.\left(x+7\right)}\)
\(\Leftrightarrow\) \(x^2+7x-4x-28-x-7=-7\)
\(\Leftrightarrow x^2+7x-4x-x-28-7+7=0\)
\(\Leftrightarrow\) x\(^2\) + 2x - 28 = 0
\(\Leftrightarrow\) x\(^2\) + 2x - 14x - 28 = 0
\(\Leftrightarrow\) (x\(^2\) + 2x) - (14x + 28) = 0
\(\Leftrightarrow\) x.(x + 2) - 14.(x + 2) = 0
\(\Leftrightarrow\) (x - 14) = 0 hoặc (x + 2) = 0
\(\Leftrightarrow\) x = 4 (Nhận) hoặc x = -2 (Loại)
5) \(\frac{x+2}{x-2}+\frac{x-2}{x+2}=\frac{8x}{x^2-4}\)
\(\Leftrightarrow\) \(\frac{\left(x+2\right).\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}+\frac{\left(x-2\right).\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{8x}{\left(x-2\right).\left(x+2\right)}\)
\(\Leftrightarrow x^2+2x+2x+4+x^2-2x-2x+4=8x\)
\(\Leftrightarrow\) \(x^2+x^2+2x+2x-2x-2x-8x+4+4=0\)
\(\Leftrightarrow2x^2-8x+8=0\)
\(\Leftrightarrow\) 2x\(^2\) - 2x - 8x + 8 = 0
\(\Leftrightarrow\) 2x(x - 1) - 8(x - 1) = 0
\(\Leftrightarrow\) 2x - 8 = 0 hoặc x - 1 = 0
\(\Leftrightarrow\) 2x = 8 hoặc x = 1
\(\Leftrightarrow\) x = 4 (Nhận) hoặc x = 1 (Nhận)
Vậy S = {4; 1}
6) \(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{4}{x^2-1}\)
\(\Leftrightarrow\) \(\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}-\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}=\frac{4}{\left(x-1\right).\left(x+1\right)}\)
\(\Leftrightarrow\) x\(^2\) + x + x + 1 - x\(^2\) + x + x - 1 = 4
\(\Leftrightarrow\) 4x - 4 = 0
\(\Leftrightarrow\) 4 (x - 1) =0
\(\Leftrightarrow\) x - 1 = 0 / 4 = 0
\(\Leftrightarrow\) x = 1 (Nhận)
Vậy S = {1}
7) \(\frac{x+1}{x-1}+\frac{-4x}{x^2-1}=\frac{x-1}{x+1}\)
\(\Leftrightarrow\) \(\frac{\left(x+1\right).\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{-4x}{\left(x-1\right).\left(x+1\right)}=\frac{\left(x-1\right).\left(x-1\right)}{\left(x+1\right).\left(x+1\right)}\)
\(\Leftrightarrow x^2+x+x+1-4x=x^2-x-x+1\)
\(\Leftrightarrow\) 0
Vậy S ={\(\varnothing\)}
giải pt
a) \(x^2+4x-3\left|x+2\right|+4=0\)
b) \(\left(x+2\right)^2-3\left|x+2\right|-4=0\)
c) \(\left(x^2-3\right)^2-6\left|x^2-3\right|+5=0\)
d) \(\frac{x^2-4x+4}{x^2-2x+1}+\frac{\left|2x-4\right|}{x-1}=3\)
e) \(\left|\frac{2x-1}{x+2}\right|-2\left|\frac{x+2}{2x-1}\right|=1\)
f) \(x^2+\frac{1}{x^2}-10=2\left|x-\frac{1}{x}\right|\)
a/ \(\Leftrightarrow\left(x+2\right)^2-3\left|x+2\right|=0\)
\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x+2\right|=0\\\left|x+2\right|=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x+2=3\\x+2=-3\end{matrix}\right.\)
b/
\(\Leftrightarrow\left|x+2\right|^2-3\left|x+2\right|-4=0\)
\(\Leftrightarrow\left(\left|x+2\right|+1\right)\left(\left|x+2\right|-4\right)=0\)
\(\Leftrightarrow\left|x+2\right|-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\)
c/
\(\Leftrightarrow\left|x^2-3\right|^2-6\left|x^2-3\right|+5=0\)
\(\Leftrightarrow\left(\left|x^2-3\right|-1\right)\left(\left|x^2-3\right|-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x^2-3\right|=1\\\left|x^2-3\right|=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3=1\\x^2-3=-1\\x^2-3=5\\x^2-3=-5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=4\\x^2=2\\x^2=8\\x^2=-2\left(l\right)\end{matrix}\right.\)
d/ ĐKXĐ: ...
\(\Leftrightarrow\frac{\left|x-2\right|^2}{\left(x-1\right)^2}+\frac{2\left|x-4\right|}{x-1}=3\)
Đặt \(\frac{\left|x-2\right|}{x-1}=a\)
\(a^2+2a-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\\\left|x-2\right|=-3\left(x-1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|x-2\right|=x-1\left(x\ge1\right)\\\left|x-2\right|=3-3x\left(x\le1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x-1\left(vn\right)\\x-2=1-x\\x-2=3-3x\\x-2=3x-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{4}{5}\\x=\frac{1}{2}\end{matrix}\right.\)
e/ ĐKXĐ: ...
Đặt \(\left|\frac{2x-1}{x+2}\right|=a>0\)
\(a-\frac{2}{a}=1\Leftrightarrow a^2-a-2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=2\end{matrix}\right.\) \(\Rightarrow\left|\frac{2x-1}{x+2}\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=2\left(x+2\right)\\2x-1=-2\left(x+2\right)\end{matrix}\right.\)
f/ ĐKXĐ: ...
Đặt \(\left|x-\frac{1}{x}\right|=a\ge0\Rightarrow a^2=x^2+\frac{1}{x^2}-2\Rightarrow x^2+\frac{1}{x^2}=a^2+2\)
Phương trình trở thành:
\(a^2+2-10=2a\)
\(\Leftrightarrow a^2-2a-8=0\Rightarrow\left[{}\begin{matrix}a=4\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left|x-\frac{1}{x}\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{1}{x}=4\\x-\frac{1}{x}=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-1=0\\x^2+4x-1=0\end{matrix}\right.\)
\(\left(3x-1\right).\left(\frac{-1}{2}x+5\right)=0\)
\(\frac{1}{4}+\frac{1}{3}:\left(2x-1\right)=-5\)
\(\left(2x+\frac{3}{5}\right)^{^2}-\frac{9}{25}=0\)
\(3\left(3x-\frac{1}{2}\right)+\frac{1}{9}=0\)
\(\left(3x-1\right)\left(\frac{-1}{2}x+5\right)=0\)
\(\orbr{\begin{cases}3x-1=0\\\frac{-1}{2}x+5=0\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{1}{3}\\x=10\end{cases}}\)
\(\frac{1}{4}+\frac{1}{3}:(2x-1)=-5\)
\(\Rightarrow\frac{1}{3}:(2x-1)=-5-\frac{1}{4}\)
\(\Rightarrow\frac{1}{3}:(2x-1)=\frac{-21}{4}\)
\(\Rightarrow2x-1=\frac{1}{3}:-\frac{21}{4}\)
\(\Rightarrow2x-1=\frac{1}{3}\cdot-\frac{4}{21}\)
\(\Rightarrow2x-1=\frac{-4}{63}\)
\(\Rightarrow2x=-\frac{4}{63}+1\)
\(\Rightarrow2x=\frac{59}{63}\Leftrightarrow x=\frac{59}{126}\)
\(\left[2x+\frac{3}{5}\right]^2-\frac{9}{25}=0\)
\(\Rightarrow\left[2x+\frac{3}{5}\right]^2=\frac{9}{25}\)
\(\Rightarrow\left[2x+\frac{3}{5}\right]^2=\left[\frac{9}{25}\right]^2\)
\(\Rightarrow2x+\frac{3}{5}=\pm\frac{9}{25}\)
\(\Rightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{9}{25}\\2x+\frac{3}{5}=-\frac{9}{25}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{3}{25}\\x=-\frac{12}{25}\end{cases}}\)
Tìm x:
a)\(2.\left(3x-\frac{1}{2}\right)-2x=\frac{1}{2}\left(2x-3\right)\)
b)\(\left(2x-\frac{3}{5}\right)^2=\frac{4}{25}\)
c)\(\left(3x-1\right)^3=27\)
d)\(5-\left|x\right|=2\)
e)|2x+1|-3=3
f)|3-2x|=5
\(\left(5-x\right)\left(3x-\frac{1}{4}\right)=0\)
GIẢI PHƯƠNG TRÌNH SAU
A) \(\frac{X^2+2X+1}{X^2+2X+2}+\frac{X^2+2X+2}{X^2+2X+3}=\frac{7}{6}\)
B) \(\frac{\left(X^2-3X-4\right)^4}{\left(X-3\right)^5\left(X+2\right)^3}+\frac{\left(X^2+4X+3\right)^6}{\left(X-3\right)^3\left(X+2\right)^5}=0\)
a)\(\left(\frac{5}{7}x-\frac{1}{4}\right)\left(\frac{-3}{4}x+\frac{1}{2}\right)=0\)
b)\(\left(\frac{4}{5}+x\right).\left(x-\frac{8}{13}\right)=0\)
c)\(\left(2x-\frac{1}{2}\right).\left(x-3\right)=0\)
d)\(x+3\frac{1}{2}x+x=\frac{1}{2}\)
a) \(\left(\frac{5}{7}x-\frac{1}{4}\right)\left(\frac{-3}{4}x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{5}{7}x-\frac{1}{4}=0\\\frac{-3}{4}x+\frac{1}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{7}x=\frac{1}{4}\\\frac{-3}{4}x=\frac{-1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{20}\\x=\frac{2}{3}\end{cases}}\)
Vậy \(x=\frac{7}{20}\) hoặc x=\(\frac{2}{3}\)
b) \(\left(\frac{4}{5}+x\right)\left(x-\frac{8}{13}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\frac{4}{5}+x=0\\x-\frac{8}{13}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=\frac{8}{13}\end{cases}}\)
Vậy x=-4/5 hoặc x=8/13
c) \(\left(2x-\frac{1}{2}\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{2}=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=3\end{cases}}\)
Vậy x=1/4 hoặc x=3
\(x+\frac{7}{2}x+x=\frac{1}{2}\)
\(2x+\frac{7}{2}x=\frac{1}{2}\)
\(\left(2+\frac{7}{2}\right)x=\frac{1}{2}\)
\(\frac{11}{2}x=\frac{1}{2}\)
\(x=\frac{1}{2}:\frac{11}{2}\)
\(x=\frac{1}{11}\)
Tìm x :
a) \(\frac{3x+2}{2}-\frac{3x+1}{6}=2x+\frac{5}{3}\)
b) \(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)
c) \(\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
d) \(\left(x+1\right)^2-4\left(x^2-2x+1\right)=0\)
a) Qui đồng rồi khử mẫu ta được:
3(3x+2)-(3x+1)=2x.6+5.2
<=> 9x+6-3x-1 = 12x+10
<=> 9x-3x-12x = 10-6+1
<=> -6x = 5
<=> x = -5/6
Vậy ....
b) ĐKXĐ: \(x\ne\pm2\)
Qui đồng rồi khử mẫu ta được:
(x+1)(x+2)+(x-1)(x-2) = 2(x2+2)
<=> x2+3x+2+x2-3x+2 = 2x2+4
<=> x2+x2-2x2+3x-3x = 4-2-2
<=> 0x = 0
<=> x vô số nghiệm
Vậy x vô số nghiệm với x khác 2 và x khác -2
c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)
Vậy ......
d) (x+1)2-4(x2-2x+1) = 0
<=> x2+2x+1-4x2+8x-4 = 0
<=> -3x2+10x-3 = 0
giải phương trình