chứng minh đa thức :
2x4+ x2+2 không có nghiệm
giúp mình nha các bạn ơi
Bài 1. Cho đa thức: P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 - 4x3.
a) Thu gọn và sắp sếp các hạng tử của đa thức trên theo lũy thừa giảm của biến.
b) Tính P(1) và P(-1).
c) Chứng tỏ rằng đa thức trên không có nghiệm.
Cần gấp ạ!!!!
Mk có yêu cầu nhỏ nhỏ 1 tí là làm ơn trình bày chi tiết 1 chút
Thanks a lot!!!!!
Đề là P(x) = 5x3 + 2x4 – x2 + 3x2 – x3 – 2x4 + 1 - 4x3 đúng không nhỉ =))?
a)\(P\left(x\right)=2x^2+1\)
b)\(P\left(1\right)=2.1^2+1=2+1=3\)
\(P\left(-1\right)=2.\left(-1\right)^2+1=2.1+1=3\)
\(P\left(x\right)=2x^2+1\)
ta có \(x^2\ge0=>2x^2\ge0\)
mà 1 > 0
\(=>2x^2+1>0\)
hay \(P\left(x\right)>0\)
=> đa thức P(x) ko có nghiệm
Cho 2 đa thức : P(x)=3x3−x2−2x4+3+2x3+x+3x4−x2−2x4+3+2x3+x+3x4 và Q(x)=−x4+x2=4x3−2+2x2−x−x3−x4+x2=4x3−2+2x2−x−x3
a) Thu gọn và sắp xếp hai đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến;
b) Tính P(x) + Q(x)
c) Chứng tỏ rằng đa thức H(x)=P(x)+Q(x) không có nghiệm
Giúp mik nha
a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)
\(=2x^4+7x^3-2x^2+2x+6\)
\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)
\(=-2x^4-10x^3+6x^2-2x-4\)
b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)
\(=-3x^3+4x^2+2\)
Chứng minh đa thức sau không có nghiệm
(x-1)^2+|x-2|
Các bạn giúp mình nha !
|x-2| là một số nguyên dương nên |x-2| > 0. với mọi x
ta có : (x-1)2lớn hơm hoặc bằng 0. với mọi x
suy ra (x-2)2+|x-2| luôn lớn hơn 0. với mọi x
suy ra đa thức trên k có nghiệm
đơn giản thôi, muốn cm nó ko có nghiệm thì phải chứng minh nó khác 0
Có: (x-1)^2+ /x-2/ =0 .Vvì (x-1)^2 >= 0; /x-2/ >= 0 => (x-1)^2 = 0; /x-2/= 0 thì tổng mới =0.
(x-1)^2 = 0 => x=1 (1)
/x-2/=0=> x=2 (2)
Từ (1); (2) => vô lí.
Vậy ko tìm đc nghiệm
ta có : (x-1)^2 luôn lớn hơn hoặc bằng 0
lx-2l luôn lớn hơn hoặc bằng 0
=> (x-1)^2 +lx-2l # 0 hay đa thức tên ko có nghiệm
Bài 1: Rút gọn biểu thức sau:
a. 3x2(2x3- x+5) - 6x5-3x3+10x2
b. -2x(x3-3x2-xx+11)-2x4+3x3+2x2-22x2x
Bài 2: Chứng minh biểu thức sau không phụ thuộc vào x:
a. x(2x+1)-x2(x+2)+(x2-x+3)
b. 4(x-6)-x2(2+3x)+x(5x-4)+3x2(x-1)
Bài 3: Cho đa thức: f(x)=3x2-x+1
g(x)=x-1
a. Tính f(x).g(x)
b. Tìm x để f(x).g(x)+x2[1-3g(x)]=
Bài 4: Tìm x:
a. \(\dfrac{1}{4}\)x2-(\(\dfrac{1}{2}\)x-4)\(\dfrac{1}{2}\)x=-14
b. 2x(x-4)+3(x-4)+x(x-2)-5(x-2)=3x
(x-4)-5(x-4)
Các bạn giúp mik giải bt nha. Cảm ơn mn nhiêu ạ.
`@` `\text {Ans}`
`\downarrow`
Gửi c!
Bài 1:
a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)
\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)
\(=10x^2+10x^2\)
\(=20x^2\)
b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)
\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)
\(=-4x^4+9x^3+4x^2-44x\)
4:
a: =>1/4x^2-1/4x^2+2x=-14
=>2x=-14
=>x=-7
b: =>2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20
=>3x^2-12x-2=3x^2-17x+20
=>5x=22
=>x=22/5
Cho 2 đa thức : P(x)=3x3−x2−2x4+3+2x3+x+3x4 và Q(x)=−x4+x2=4x3−2+2x2−x−x3
a) Thu gọn và sắp xếp hai đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến;
b) Tính P(x) + Q(x)
c) Chứng tỏ rằng đa thức H(x)=P(x)+Q(x) không có nghiệm
Giúp mik nha
a.
\(P(x)=3x^3-x^2-2x^4+3+2x^3+x+3x^4\)
\(=(-2x^4+3x^4)+(3x^3+2x^3)-x^2+x+3\)
\(=x^4+5x^3-x^2+x+3\)
\(Q(x)=-x^4+x^2-4x^3-2+2x^2-x-x^3\)
\(=-x^4+(-4x^3-x^3)+(x^2+2x^2)-x-2\)
\(=-x^4-5x^3+3x^2-x-2\)
b.
\(P(x)+Q(x)=(x^4+5x^3-x^2+x+3)+(-x^4-5x^3+3x^2-x-2)\)
\(=(x^4-x^4)+(5x^3-5x^3)+(-x^2+3x^2)+(x-x)+(3-2)\)
\(=2x^2+1\)
c.\(H(x)=Q(x)+P(x)\)
\(\Rightarrow H(x)=2x^2+1=0\)
\(\Rightarrow2x^2+1=0\)
\(2x^2\) \(=-1\)
\(x^2\) \(=\frac{-1}{2}\)
mà \(x^2\ge0\)
\(\Rightarrow\)Đa thức \(H(x)=P(x)+Q(x)\)ko có nghiệm
học tốt
Nhớ kết bạn với mình đó
a) Thực hiện phép chia đa thức (2x4 - 6x3 +12x2 - 14x + 3) cho đa thức (x2 – 4x +1)
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
Chứng mình đa thức B(x) = 5x3 + 2x4 - x2 + 3x2 - x3 - x4 + 1 - 4x3 luôn nhận giá trị dương với mọi giá trị của biến x
Cho các đa thức:
F(x)=4x4-2+2x3+2x4-5x+4x3-9
G(x)=6x4+6x3-x2-5x-27
a) Thu gọn và sắp xếp các hạng tử F(x) theo lũy thừa giảm của biến
b) Tính K(x)=F(x) + G(x)
c) Gọi H(x)=F(x) - G(x). Chứng minh đa thức H(x) vô nghiệm
`a,`
`F(x)=4x^4-2+2x^3+2x^4-5x+4x^3-9`
`F(x)=(2x^4+4x^4)+(2x^3+4x^3)-5x+(-2-9)`
`F(x)=6x^4+6x^3-5x-11`
`b,`
`K(x)=F(x)+G(x)`
`K(x)=(6x^4+6x^3-5x-11)+(6x^4+6x^3-x^2-5x-27)`
`K(x)=6x^4+6x^3-5x-11+6x^4+6x^3-x^2-5x-27`
`K(x)=(6x^4+6x^4)+(6x^3+6x^3)-x^2+(-5x-5x)+(-11-27)`
`K(x)=12x^4+12x^3-x^2-10x-38`
`c,`
`H(x)=F(x)-G(x)`
`H(x)=(6x^4+6x^3-5x-11)-(6x^4+6x^3-x^2-5x-27)`
`H(x)=6x^4+6x^3-5x-11-6x^4-6x^3+x^2+5x+27`
`H(x)=(6x^4-6x^4)+(6x^3-6x^3)+x^2+(-5x+5x)+(-11+27)`
`H(x)=x^2+16`
Đặt `x^2+16=0`
Ta có: \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2+16\ge16>0\text{ }\forall\text{ }x\)
`->` Đa thức `H(x)` vô nghiệm.
cho A(x) là đa thức khác đa thức o:
Biết x.A(x-2)=(x-4).A(x). Chứng minh A(x) có bậc là 2
CHỈ MÌNH ĐI MẤY BẠN ƠI :(
Để mình nhắc cho bạn nhớ nhé: Đa thức có số bậc bao nhiêu thì có số nghiệm bấy nhiêu. Vậy chúng ta cần chứng minh A(x) có 2 nghiệm
Nếu x=4:
x.A(x-2)=(x-4).A(x)
4.A(4-2)=(4-4).A(4)
4.A(2)=0.A(4)
=> A(2)=0. Vậy 2 là một nghiệm của A(x)
Nếu x=0:
0.A(x-2)=(x-4).A(x)
0.A(-2)= -4.A(x)
=> A(x)=0 vậy 0 là một nghiệm của A(x)
=> A(x) có 2 nghiệm thì A(x) có bậc 2