giải phương trình (x2+3x+1)(x2+3x+2)=6
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Giải các phương trình sau:
b) (2x+1)2-2x-1=2
c) (x2-3x)2+5(x2-3x)+6=0
d) (x2-x-1)(x2-x)-2=0
tham khảo
https://hoidapvietjack.com/q/57243/giai-cac-phuong-trinh-sau-a-2x12-2x-12-b-x2-3x-2-5x2-3x60
b) (2x+1)2-2x-1=2
\(< =>4x^2+4x+1-2x-1=2\)
\(< =>4x^2+2x-2=0\)
\(< =>4x^2+4x-2x-2=0\)
\(< =>\left(4x^2+4x\right)-\left(2x+2\right)=0\)
\(< =>4x\left(x+1\right)-2\left(x+1\right)=0\)
\(< =>\left(x+1\right)\left(4x-2\right)=0\)
\(=>\left\{{}\begin{matrix}x+1=0=>x=-1\\4x-2=0=>x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy....
b) (2x+1)2-2x-1=2
<=>4x2+4x+1−2x−1=2
<=>4x2+2x−2=0
<=>4x2+4x−2x−2=0
<=>(4x2+4x)−(2x+2)=0
<=>4x(x+1)−2(x+1)=0
<=>(x+1)(4x−2)=0
giải phương trình:(x2-3x)2+5(x2-3x)+6=0
Đặt x2 - 3x = t
phương trình trở thành: t2 + 5t + 6 = 0
=> t2 + 3t + 2t + 6 = 0
=> t(t+3) + 2(t+3) = 0
=> (t+3)(t+2) = 0
=> \(\left[{}\begin{matrix}t+2=0\\t+3=0\end{matrix}\right.\)
Thay lại t = x2 - 3x vào hai trường hợp trên, giải phương trình ta được:
+ TH1: t+2 = 0 => x = 1 hoặc x = 2.
+ TH2: t+3 = 0 => vô nghiệm
Vậy, giá trị của x thỏa mãn phương trình là 1 hoặc 2.
Giải các phương trình sau bằng cách đưa về phương trình tích x 2 + 3 x + 2 2 = 6.( x 2 +3x +2)
⇔ [( x 2 +x +1) + (4x -1 )] [( x 2 +x +1) - (4x -1 )]=0
∆ = - 3 2 -4.2.1 = 9 -8 =1 > 0
∆ = 1 =1
x 2 + 3 x + 2 2 = 6.( x 2 +3x +2)
⇔ x 2 + 3 x + 2 2 - 6.( x 2 +3x +2)=0
⇔ ( x 2 +3x + 2)[ ( x 2 +3x + 2) -6] =0
⇔ ( x 2 +3x + 2) .( x 2 +3x -4 )=0
x 2 +3x + 2 =0
Phương trình có dạng a –b +c =0 nên x 1 = -1 , x 2 =-2
x 2 +3x -4 =0
Phương trình có dạng a +b +c =0 nên x 1 = 1 , x 2 = -4
Vậy phương trình đã cho có 4 nghiệm :
x 1 = -1 , x 2 =-2 ; x 3 = 1 , x 4 =-4
bài 1 giải các bất phương trình sau
a, -x2 +5x-6 ≥ 0
b, x2-12x +36≤0
c, -2x2 +4x-2≤0
d, x2 -2|x-3| +3x ≥ 0
e, x-|x+3| -10 ≤0
bài 2 xét dấu các biểu thức sau
a,<-x2+x-1> <6x2 -5x+1>
b, x2-x-2/ -x2+3x+4
c, x2-5x +2
d, x-< x2-x+6 /-x2 +3x+4 >
Bài 1:
a: \(\Leftrightarrow x^2-5x+6< =0\)
=>(x-2)(x-3)<=0
=>2<=x<=3
b: \(\Leftrightarrow\left(x-6\right)^2< =0\)
=>x=6
c: \(\Leftrightarrow x^2-2x+1>=0\)
\(\Leftrightarrow\left(x-1\right)^2>=0\)
hay \(x\in R\)
Khi giải phương trình 2 - 3 x - 2 x - 3 = 3 x + 2 2 x + 1 , bạn Hà làm như sau:
Theo định nghĩa hai phân thức bằng nhau, ta có:
2 - 3 x - 2 x - 3 = 3 x + 2 2 x + 1
⇔ (2 – 3x)(2x + 1) = (3x + 2)(- 2x – 3)
⇔ -6 x 2 + x + 2 = -6 x 2 – 13x – 6
⇔ 14x = - 8
⇔ x = - 4/7
Vậy phương trình có nghiệm x = - 4/7 .
Em hãy nhận xét về bài làm của bạn Hà.
Đáp số của bài toán đúng nhưng lời giải của bạn Hà chưa đầy đủ.
Lời giải của bạn Hà thiếu bước tìm điều kiện xác định và bước đối chiếu giá trị của x tìm được với điều kiện để kết luận nghiệm.
Trong bài toán trên thì điều kiện xác định của phương trình là:
x ≠ - 3/2 và x ≠ - 1/2
So sánh với điều kiện xác định thì giá trị x = - 4/7 thỏa mãn.
Vậy x = - 4/7 là nghiệm của phương trình.
Giải các phương trình sau:
a) (2x-1)2-0,25=0
b) x2+9=6x
c) (x2-4)-3x-6=0
giải giúp tui với
`a)(2x-1)^2-0,25=0`
`<=>(2x-1-0,5)(2x-1+0,5)=0`
`<=>(2x-1,5)(2x-0,5)=0`
`<=>[(x=0,75)(x=0,25):}`
`b)x^2+9=6x`
`<=>(x-3)^2=0`
`<=>x-3=0`
`<=>x=3`
`c)(x^2-4)-3x-6=0`
`<=>(x-2)(x+2)-3(x+2)=0`
`<=>(x+2)(x-2-3)=0`
`<=>(x+2)(x-5)=0`
`<=>[(x=-2),(x=5):}`
a: =>(2x-1-0,5)(2x-1+0,5)=0
=>(2x-1,5)(2x-0,5)=0
=>x=0,25 hoặc x=0,75
b: =>x^2-6x+9=0
=>(x-3)^2=0
=>x-3=0
=>x=3
c: =>(x-2)(x+2)-3(x+2)=0
=>(x+2)(x-5)=0
=>x=5 hoặc x=-2
Hãy giải các phương trình sau đây :
1, x2 - 4x + 4 = 0
2, 2x - y = 5
3, x + 5y = - 3
4, x2 - 2x - 8 = 0
5, 6x2 - 5x - 6 = 0
6,( x2 - 2x )2 - 6 (x2 - 2x ) + 5 = 0
7, x2 - 20x + 96 = 0
8, 2x - y = 3
9, 3x + 2y = 8
10, 2x2 + 5x - 3 = 0
11, 3x - 6 = 0
1) Ta có: \(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
1) `x^2+4-2(x-1)=(x-2)^2`
`<=>x^2+4-2x+2=x^2-4x+4`
`<=>-2x+2=-4x`
`<=>2x=-2`
`<=>x=-1`
.
2) ĐKXĐ: `x \ne \pm 3`
`(x+3)/(x-3)-(x-1)/(x+3)=(x^2+4x+6)/(x^2-9)`
`<=>(x+3)^2-(x-1)(x-3)=x^2+4x+6`
`<=>x^2+6x+9-x^2+4x-3=x^2+4x+6`
`<=>10x+6=x^2+4x+6`
`<=>x^2-6x=0`
`<=>x(x-6)=0`
`<=>x=0;x=6`
.
3) ĐKXĐ: `x \ne \pm 3`
`(3x-3)/(x^2-9) -1/(x-3 )= (x+1)/(x+3)`
`<=>(3x-3)-(x+3)=(x+1)(x-3)`
`<=> 2x-6=x^2-2x-3`
`<=>x^2-4x+3=0`
`<=>x^2-x-3x+3=0`
`<=>x(x-1)-3(x-1)=0`
`<=>(x-3)(x-1)=0`
`<=> x=3;x=1`
Vậy...
Giải các phương trình sau:
a) 2 x + 1 2 − 2 x − 1 = 2 ;
b) x 2 − 3 x 2 + 5 x 2 − 3 x + 6 = 0 ;
c) x 2 − x − 1 x 2 − x − 2 = 0 .
Giải phương trình: (3x – 1)(x2 + 2) = (3x – 1)(7x – 10).
(3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
⇔ (3x – 1)(x2 + 2) – (3x – 1)(7x – 10) = 0
⇔ (3x – 1)(x2 + 2 – 7x + 10) = 0
⇔ (3x – 1)(x2 – 7x + 12) = 0
⇔ (3x – 1)(x2 – 4x – 3x + 12) = 0
⇔ (3x – 1)[(x2 – 4x) – (3x - 12)] = 0
⇔ (3x – 1)[x(x – 4) – 3(x – 4)] = 0
⇔ (3x – 1)(x – 3)(x – 4) = 0
⇔ 3x – 1 = 0 hoặc x – 3 = 0 hoặc x – 4 = 0
+ 3x – 1 = 0 ⇔ 3x = 1 ⇔ x = 1/3.
+ x – 3 = 0 ⇔ x = 3.
+ x – 4 = 0 ⇔ x = 4.
Vậy phương trình có tập nghiệm là