Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
ND
Xem chi tiết
H24
23 tháng 2 2021 lúc 11:31

tham khảo 

https://hoidapvietjack.com/q/57243/giai-cac-phuong-trinh-sau-a-2x12-2x-12-b-x2-3x-2-5x2-3x60

Bình luận (0)
TM
23 tháng 2 2021 lúc 11:36

b) (2x+1)2-2x-1=2

\(< =>4x^2+4x+1-2x-1=2\)

\(< =>4x^2+2x-2=0\)

\(< =>4x^2+4x-2x-2=0\)

\(< =>\left(4x^2+4x\right)-\left(2x+2\right)=0\)

\(< =>4x\left(x+1\right)-2\left(x+1\right)=0\)

\(< =>\left(x+1\right)\left(4x-2\right)=0\)

\(=>\left\{{}\begin{matrix}x+1=0=>x=-1\\4x-2=0=>x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy....

Bình luận (2)
LT
23 tháng 2 2021 lúc 11:45

b) (2x+1)2-2x-1=2

<=>4x2+4x+1−2x−1=2

<=>4x2+2x−2=0

<=>4x2+4x−2x−2=0

<=>(4x2+4x)−(2x+2)=0

<=>4x(x+1)−2(x+1)=0

<=>(x+1)(4x−2)=0

Bình luận (0)
LN
Xem chi tiết
NL
6 tháng 2 2021 lúc 15:20

( tl nãy r nha : vvvv )

Bình luận (1)
TH
6 tháng 2 2021 lúc 15:24

Đặt x2 - 3x = t

phương trình trở thành: t2 + 5t + 6 = 0

=> t2 + 3t + 2t + 6 = 0

=> t(t+3) + 2(t+3) = 0

=> (t+3)(t+2) = 0

=> \(\left[{}\begin{matrix}t+2=0\\t+3=0\end{matrix}\right.\)

Thay lại t = x2 - 3x vào hai trường hợp trên, giải phương trình ta được:

+ TH1: t+2 = 0 => x = 1 hoặc x = 2.

+ TH2: t+3 = 0 => vô nghiệm

Vậy, giá trị của x thỏa mãn phương trình là 1 hoặc 2.

 

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 1 2018 lúc 4:48

⇔ [( x 2  +x +1) + (4x -1 )] [( x 2  +x +1) - (4x -1 )]=0

∆  =  - 3 2  -4.2.1 = 9 -8 =1 > 0

∆ = 1  =1

x 2 + 3 x + 2 2  = 6.( x 2  +3x +2)

⇔  x 2 + 3 x + 2 2  - 6.( x 2  +3x +2)=0

⇔ ( x 2  +3x + 2)[ ( x 2  +3x + 2) -6] =0

⇔ ( x 2  +3x + 2) .( x 2  +3x -4 )=0

x 2  +3x + 2 =0

Phương trình có dạng a –b +c =0 nên  x 1  = -1 , x 2  =-2

x 2  +3x -4 =0

Phương trình có dạng a +b +c =0 nên  x 1  = 1 , x 2 = -4

Vậy phương trình đã cho có 4 nghiệm :

x 1  = -1 , x 2  =-2 ;  x 3 = 1 , x 4  =-4

Bình luận (0)
DT
Xem chi tiết
NT
23 tháng 2 2022 lúc 20:25

Bài 1: 

a: \(\Leftrightarrow x^2-5x+6< =0\)

=>(x-2)(x-3)<=0

=>2<=x<=3

b: \(\Leftrightarrow\left(x-6\right)^2< =0\)

=>x=6

c: \(\Leftrightarrow x^2-2x+1>=0\)

\(\Leftrightarrow\left(x-1\right)^2>=0\)

hay \(x\in R\)

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 6 2019 lúc 6:43

Đáp số của bài toán đúng nhưng lời giải của bạn Hà chưa đầy đủ.

Lời giải của bạn Hà thiếu bước tìm điều kiện xác định và bước đối chiếu giá trị của x tìm được với điều kiện để kết luận nghiệm.

Trong bài toán trên thì điều kiện xác định của phương trình là:

x ≠ - 3/2 và x  ≠  - 1/2

So sánh với điều kiện xác định thì giá trị x = - 4/7 thỏa mãn.

Vậy x = - 4/7 là nghiệm của phương trình.

Bình luận (0)
NN
Xem chi tiết
H24
28 tháng 1 2023 lúc 12:05

`a)(2x-1)^2-0,25=0`

`<=>(2x-1-0,5)(2x-1+0,5)=0`

`<=>(2x-1,5)(2x-0,5)=0`

`<=>[(x=0,75)(x=0,25):}`

`b)x^2+9=6x`

`<=>(x-3)^2=0`

`<=>x-3=0`

`<=>x=3`

`c)(x^2-4)-3x-6=0`

`<=>(x-2)(x+2)-3(x+2)=0`

`<=>(x+2)(x-2-3)=0`

`<=>(x+2)(x-5)=0`

`<=>[(x=-2),(x=5):}`

Bình luận (0)
NT
28 tháng 1 2023 lúc 12:05

a: =>(2x-1-0,5)(2x-1+0,5)=0

=>(2x-1,5)(2x-0,5)=0

=>x=0,25 hoặc x=0,75

b: =>x^2-6x+9=0

=>(x-3)^2=0

=>x-3=0

=>x=3

c: =>(x-2)(x+2)-3(x+2)=0

=>(x+2)(x-5)=0

=>x=5 hoặc x=-2

Bình luận (0)
NT
Xem chi tiết
NT
6 tháng 3 2021 lúc 19:44

1) Ta có: \(x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

hay x=2

Vậy: S={2}

Bình luận (0)
TA
Xem chi tiết
TL
2 tháng 3 2021 lúc 20:59

1) `x^2+4-2(x-1)=(x-2)^2`

`<=>x^2+4-2x+2=x^2-4x+4`

`<=>-2x+2=-4x`

`<=>2x=-2`

`<=>x=-1`

.

2) ĐKXĐ: `x \ne \pm 3`

`(x+3)/(x-3)-(x-1)/(x+3)=(x^2+4x+6)/(x^2-9)`

`<=>(x+3)^2-(x-1)(x-3)=x^2+4x+6`

`<=>x^2+6x+9-x^2+4x-3=x^2+4x+6`

`<=>10x+6=x^2+4x+6`

`<=>x^2-6x=0`

`<=>x(x-6)=0`

`<=>x=0;x=6`

.

3) ĐKXĐ: `x \ne \pm 3`

`(3x-3)/(x^2-9) -1/(x-3 )= (x+1)/(x+3)`

`<=>(3x-3)-(x+3)=(x+1)(x-3)`

`<=> 2x-6=x^2-2x-3`

`<=>x^2-4x+3=0`

`<=>x^2-x-3x+3=0`

`<=>x(x-1)-3(x-1)=0`

`<=>(x-3)(x-1)=0`

`<=> x=3;x=1`

Vậy...

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 4 2017 lúc 14:18

Bình luận (0)
PB
Xem chi tiết
CT
14 tháng 8 2019 lúc 11:24

(3x – 1)(x2 + 2) = (3x – 1)(7x – 10)

⇔ (3x – 1)(x2 + 2) – (3x – 1)(7x – 10) = 0

⇔ (3x – 1)(x2 + 2 – 7x + 10) = 0

⇔ (3x – 1)(x2 – 7x + 12) = 0

⇔ (3x – 1)(x2 – 4x – 3x + 12) = 0

⇔ (3x – 1)[(x2 – 4x) – (3x - 12)] = 0

⇔ (3x – 1)[x(x – 4) – 3(x – 4)] = 0

⇔ (3x – 1)(x – 3)(x – 4) = 0

⇔ 3x – 1 = 0 hoặc x – 3 = 0 hoặc x – 4 = 0

+ 3x – 1 = 0 ⇔ 3x = 1 ⇔ x = 1/3.

+ x – 3 = 0 ⇔ x = 3.

+ x – 4 = 0 ⇔ x = 4.

Vậy phương trình có tập nghiệm là Giải bài 25 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

Bình luận (0)