Những câu hỏi liên quan
DX
Xem chi tiết
PN
6 tháng 4 2017 lúc 20:02

(Đây là mẹo khi làm những dạng bài cm vô nghiệm:thường ta sẽ tách đôi hạng tử  bậc lẻ ( ở đa thức này là -3x) và biến đổi thành bình phương của 1 số cộng với 1 số khác lớn hơn 0)

Cách làm nó như thế này:

Ta có : A =  x^2 - 3x +5

= x^2 - 3/2.x - 3/2.x + 5

= x(x-3/2)  - 3/2.x + 5

( lúc này để có bình phương, ta sẽ tách thằng 5 ra.)

A= x(x-3/2) - 3/2. x  +(3/2. 3/2 + 3,75)

= x(x-3/2) - 3/2(x-3/2) + 3,75

=(x-3/2)^2 + 3,75

=> A >0

Vậy đa thức A vô nghiệm

Bình luận (0)
H24
Xem chi tiết
H24
4 tháng 1 2022 lúc 19:04

B

Bình luận (0)
LH
Xem chi tiết
H24
19 tháng 4 2020 lúc 8:51

\(x^2+x+2=x^2+2.x+1+1-x=x^2+2.x.1+1^2+1-x\)

\(=\left(x+1\right)^2+1-x\)

Mk chỉ lm đc vậy thôi

Bình luận (0)
 Khách vãng lai đã xóa
NN
19 tháng 4 2020 lúc 9:22

\(x^2+x+2=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{7}{4}\)

\(=\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)

\(\Rightarrow\)Đa thức đã cho vô nghiệm ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
LT
8 tháng 5 2020 lúc 17:32

Phương trình x2 = -4 có nghiệm là:

A. Một nghiệm x=2

B. Một nghiệm x=-2

C. Có hai nghiệm:x=-2;x=2

D. Vô nghiệm

Bình luận (0)
NP
Xem chi tiết
VV
Xem chi tiết
AH
12 tháng 8 2023 lúc 23:52

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

Bình luận (0)
AH
12 tháng 8 2023 lúc 23:54

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

Bình luận (0)
AH
12 tháng 8 2023 lúc 23:55

Tìm min

$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$

$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$

$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$

$\Leftrightarrow x=\frac{1}{10}$

Bình luận (0)
KD
Xem chi tiết
NT
24 tháng 10 2021 lúc 20:40

d: ta có: \(x^2-4x+4=9\left(x-2\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=11\end{matrix}\right.\)

Bình luận (0)
HY
Xem chi tiết
NN
Xem chi tiết
H24

a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555

=> 101x +5050 = 5555

=> 101x = 505

=> x = 505 : 101 = 5

Vậy, x = 5

b)1+2+3+4+...+x=820

=> ( x+1) x :2 = 820

=> (x+1)x = 1640

Mà 1640 = 40 . 41

=> x = 40 ( vì {x+1} - x = 1)

Vậy, x = 40

c) 3x+1 = 9.27=243

=> 3x+1 = 35

=>x + 1 = 5

=> x = 4

Vậy, x=4

d) x+2x+3x+...+99x+100x=15150

=> [( 100 + 1) x 100 :2 ] x = 15150

=> 5050x = 15150

=> x = 15150:5050 = 3

Vậy, x =3

e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550

=> 100x + 5050 = 205550

=> 100x =  205550 - 5050= 200500

=> x =  200500 : 100 = 2005

Vậy, x = 2005

f)3x+3x+1+3x+2=351

=> 3x + 3x . 3 + 3x x 9 = 351

=> 3x ( 1+3+9) = 351

=> 3x  . 13 = 351

=> 3 = 351 :13=27 mà 27 = 33

=> x=3

Vậy, x=3

Bình luận (0)
NN
23 tháng 7 2023 lúc 7:54

mình đg cần gấp á

 

Bình luận (0)
H9
23 tháng 7 2023 lúc 8:12

a) \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5555\)

\(\Rightarrow x+x+1+x+2+x+3+...+x+100=5555\)

\(\Rightarrow101\cdot x+5050=5555\)

\(\Rightarrow101\cdot x=5555-5050\)

\(\Rightarrow101\cdot x=505\)

\(\Rightarrow x=505:101\)

\(\Rightarrow x=5\)

b) \(1+2+3+4+...+x=820\)

\(\Rightarrow\left(x+1\right)\cdot\left[\left(x-1\right):1+1\right]:2=820\)

\(\Rightarrow\left(x+1\right)\cdot\left(x+1-1\right):2=820\)

\(\Rightarrow\left(x+1\right)\cdot x:2=820\)

\(\Rightarrow x\cdot\left(x+1\right)=820\cdot2\)

\(\Rightarrow x\cdot\left(x+1\right)=1640\)

Ta thấy: \(40\cdot41=1640\)

Vậy: \(x=40\)

Bình luận (0)