(x2-6x +9)2+x2-6x-3=0
hãy giải phương trình
ho phương trình 2x^2-6x-3=0 không giải phương trình hãy tính x1,x2 với B=3x1x2-x1^2-x2^2
\(2x^2-6x-3=0\)
\(\Delta'=\left(-3\right)^2+3.2=15>0\)
⇒ Phương trình có hai nghiệm phân biệt với mọi m.
Theo hệ thức viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1.x_2=-\dfrac{3}{2}\end{matrix}\right.\)
Ta có : \(B=3x_1x_2-x_1^2-x_2^2=-\left(x_1+x_2\right)^2+5x_1x_2=-9+5.\left(-\dfrac{3}{2}\right)=\dfrac{135}{2}\)
Vậy \(B=-\dfrac{135}{2}\) với hai nghiệm phân biệt thỏa mãn.
cho phương trình 2x^2-6x-3=0 không giải phương trình hãy tính x1,x2 với a=x1^2 x2^2-2x1-2x2
\(2x^2-6x-3=0\)
\(\Delta'=3^2+3.2=15>0\)
⇒ Phương trình có hai nghiệm phân biệt.
Theo hệ thức viét có : \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=-\dfrac{3}{2}\end{matrix}\right.\)
Ta có : \(A=x_1^2x_2^2-2x_1-2x_2=\left(x_1x_2\right)^2-2\left(x_1+x_2\right)=\left(-\dfrac{3}{2}\right)^2-2.3=-\dfrac{15}{4}\)
Vậy \(A=-\dfrac{15}{4}\) thì thỏa mãn điều kiện bài ra.
Cho phương trình \(2x^2\) + 6x - 3 = 0 có hai nghiệm x1, x2. Không giải phương trình, hãy tính giá trị của biểu thức \(\dfrac{2}{x1^2}+\dfrac{2}{x2^2}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{6}{2}=-3\\x_1x_2=\dfrac{-3}{2}\end{matrix}\right.\)
Ta có: \(\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}\)
\(=\dfrac{2x^2_2+2x_1^2}{\left(x_1\cdot x_2\right)^2}\)
\(=\dfrac{2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]}{\left(-\dfrac{3}{2}\right)^2}=\dfrac{2\cdot\left[\left(-3\right)^2-2\cdot\dfrac{-3}{2}\right]}{\dfrac{9}{4}}\)
\(=\dfrac{2\cdot12}{\dfrac{9}{4}}=24\cdot\dfrac{4}{9}=\dfrac{96}{9}=\dfrac{32}{3}\)
Giải phương trình: (x2- 6x + 9)2- 15(x2 - 6x + 10) = 1
Giải phương trình: (x2- 6x + 9)2- 15(x2 - 6x + 10) = 1
Giải các phương trình:
b) x 2 - 6 x + 9 - 4 x 2 + 4 x + 1 = 0
Giải phương trình: x 2 + 2 x - 3 x + 6 x - 3 = 0
Điều kiện xác định: x ≠ 3.
Suy ra: (x2 + 2x) – (3x + 6) = 0
⇔ x(x + 2) – 3(x + 2) = 0
⇔ (x – 3)(x + 2) = 0
⇔ x – 3 = 0 hoặc x + 2 = 0
+ x – 3 = 0 ⇔ x = 3 (Không thỏa mãn đkxđ)
+ x + 2 = 0 ⇔ x = -2 (Thỏa mãn đkxđ).
Vậy phương trình có tập nghiệm S = {-2}.
Giải các phương trình : - 2 x 2 +6x = 0
Ta có: - 2 x 2 + 6x = 0 ⇔ x(6 - 2 x) = 0
⇔ x = 0 hoặc 6 - 2 x = 0 ⇔ x = 0 hoặc x = 3 2
Vậy phương trình có hai nghiệm x 1 = 0, x 2 = 3 2
Cho phương trình 2x^2 - 6x +3 =0
a) chứng tỏ phương trình trên có 2 nghiệm phân biệt x1 x2
b) Không giải phương trình để tìm 2 nghiệm x1, x2, hãy tính giá trị của biểu thưc A= 2x1 +x1.x2 +2x2 phần x12 .x2 +x1.x22
Cho pt: x2 -6x+8=0 có 2 nghiệm phân biệt x1;x2. Không giải phương trình, hãy tính giá trị biểu thức B=\(\dfrac{x_1\sqrt{x_1}-x_2\sqrt{x_2}}{x_1-x_2}\)
Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=8\end{matrix}\right.\)
Theo đề:
\(B=\dfrac{x_1\sqrt{x_1}-x_2\sqrt{x_2}}{x_1-x_2}=\dfrac{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(x_1+\sqrt{x_1x_2}+x_2\right)}{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)}\left(x_1,x_2\ge0\right)\)
\(=\dfrac{6+\sqrt{8}}{\sqrt{x_1}+\sqrt{x_2}}\)
Tính: \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=6+2\sqrt{8}=6+4\sqrt{2}=\left(\sqrt{4}+\sqrt{2}\right)^2\)
\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=\sqrt{4}+\sqrt{2}\) (thỏa mãn \(x_1,x_2\ge0\))
Khi đó: \(P=\dfrac{6+\sqrt{8}}{\sqrt{4}+\sqrt{2}}=4-\sqrt{2}\)