\(\left(x^2-6x+9\right)^2+\left(x^2-6x-3\right)=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)^2+\left(x^2-6x+9\right)-12=0\)
Đặt \(x^2-6x+9=z\) \(\left(z\ge0\right)\)
\(\Rightarrow z^2+z-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}z=3\left(TM\right)\\z=-4\left(KTM\right)\end{matrix}\right.\)
\(\Rightarrow x^2-6x+9=3\Leftrightarrow x^2-6x+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{matrix}\right.\)
Vậy phương trình có nghiệm \(x=3\pm\sqrt{3}\)