Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
H24
Xem chi tiết
NN
3 tháng 9 2023 lúc 9:42

Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)

Bình luận (0)
NN
3 tháng 9 2023 lúc 9:43

nhầm

 

Bình luận (0)
MA
Xem chi tiết
MT
Xem chi tiết
DN
Xem chi tiết
H24
1 tháng 7 2019 lúc 20:16

2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)

\(\Rightarrow x=3\)

Bình luận (0)
H24
1 tháng 7 2019 lúc 20:34

c,\(pt\Leftrightarrow3\left(x-1\right)+\frac{x-1}{4x}+\left(2-\sqrt{3x+1}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}\right)=0\)

\(\Rightarrow x=1\)

\(3+\frac{1}{4x}+\frac{1}{2+\sqrt{3x+1}}=0\)

bạn làm nốt pần này nhá

Bình luận (0)
MT
Xem chi tiết
TH
23 tháng 7 2021 lúc 9:07

a) ĐKXĐ: \(x^2+3x\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge0\\x\le-3\end{matrix}\right.\).

PT \(\Leftrightarrow10-\left(x^2+3x\right)=3\sqrt{x^2+3x}\). (*)

Đặt \(\sqrt{x^2+3x}=a\ge0\)

\((*)\Leftrightarrow a^2+3a-10=0\)

\(\Leftrightarrow\left(a-2\right)\left(a+5\right)=0\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\).

Với \(a=2\Rightarrow\sqrt{x^2+3x}=2\Leftrightarrow x^2+3x-4=0\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\x=-4\left(TM\right)\end{matrix}\right.\).

Vậy x = 1; x = -4

 

Bình luận (0)
DC
Xem chi tiết
DC
10 tháng 3 2019 lúc 15:11

giải giúp mình với mọi người

Bình luận (0)
SH
10 tháng 3 2019 lúc 15:14

Tích cho mk đi các bn

Nha

Bình luận (0)
ND
10 tháng 3 2019 lúc 15:53

ĐKXĐ: \(x\in R,x\ge0\)

Pt cho tương đương: \(2\sqrt{x}\left(x+1\right)+\sqrt{3\left(x+1\right)^2\left(2x+1\right)}=\left(x+1\right)\left(5x^2-8x+8\right)\)

\(\Leftrightarrow2\sqrt{x}\left(x+1\right)+\left(x+1\right)\sqrt{3\left(2x+1\right)}-\left(x+1\right)\left(5x^2-8x+8\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[2\sqrt{x}+\sqrt{3\left(2x+1\right)}-5x^2+8x-8\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(l\right)\\2\sqrt{x}+\sqrt{3\left(2x+1\right)}-5x^2+8x-8=0\left(1\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow2\sqrt{x}-2+\sqrt{3\left(2x+1\right)}-3-5x^2+8x-3=0\)

\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{x}+1}+\frac{6\left(x-1\right)}{\sqrt{3\left(2x+1\right)}+3}-\left(x-1\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{3\left(2x+1\right)}+3}-5x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{3\left(2x+1\right)}+3}-5x+3=0\left(2\right)\end{cases}}\)

+) Ta thấy x=1 là nghiệm của pt (2) (tm)

+) Xét với \(0\le x< 1\) thì \(VT_{\left(2\right)}>1+1-5+3=0\) (Vô lí vì VP(2)=0)

+) Xét với \(x>1\) thì \(VT_{\left(2\right)}< 1+1-5+3=0\) (Vô lí nốt)

Vậy pt cho có nghiệm duy nhất x=1.

Bình luận (0)
TT
Xem chi tiết
MT
Xem chi tiết
MT
Xem chi tiết