dạ giúp em chứng minh sin + cos -1 chia cho sin - cos +1 = cos chia cho sin + 1
Chứng minh các biểu thức sau không phụ thuộc vào x:
a) \(A=2\left(cos^6x+sin^6x\right)-3\left(cos^4x+sin^4x\right)\)
b) \(B=2\left(sin^4x+cos^4x+sin^2x.cos^2x\right)^2-sin^8x-cos^8x\)
c) \(C=\dfrac{sin^2x}{1+cotgx}+\dfrac{cos^2x}{1+tgx}+sinx.cosx\)
d) \(D=\dfrac{cotg^2a-cos^2x}{cotg^2x}+\dfrac{sinx.cosx}{cotgx}\)
e) \(E=3\left(sin^8x-cos^8x\right)+4\left(cos^6x-2sin^6x\right)+6sin^4x\)
f) \(F=\dfrac{tg^2x}{sin^2x.cos^2x}-\left(1+tg^2x\right)^2\)
f) Cho α, Blà hai góc nhọn. Chứng minh rằng:
\(\cos^2\alpha-\cos^2\beta=\sin^2\alpha-\sin^2\beta=\dfrac{1}{1+\tan^2\alpha}-\dfrac{1}{1+tan^2\beta}\)
Đề đúng: \(cos^2\alpha-cos^2\beta=sin^2\beta-sin^2\alpha=\dfrac{1}{1+tan^2\alpha}-\dfrac{1}{1+tan^2\beta}\)
Áp dụng công thức: \(sin^2x+cos^2x=1\Rightarrow cos^2x=1-sin^2x\)
Ta có:
\(cos^2\alpha-cos^2\beta=\left(1-sin^2\alpha\right)-\left(1-sin^2\beta\right)=-sin^2\alpha+sin^2\beta=sin^2\beta-sin^2\alpha\) (1)
Lại có:
\(cos^2\alpha-cos^2\beta=\dfrac{cos^2\alpha}{1}-\dfrac{cos^2\beta}{1}=\dfrac{cos^2\alpha}{sin^2\alpha+cos^2\alpha}-\dfrac{cos^2\beta}{sin^2\beta+cos^2\beta}\)
\(=\dfrac{\dfrac{cos^2\alpha}{cos^2\alpha}}{\dfrac{sin^2\alpha}{cos^2\alpha}+\dfrac{cos^2\alpha}{cos^2\alpha}}-\dfrac{\dfrac{cos^2\beta}{cos^2\beta}}{\dfrac{sin^2\beta}{cos^2\beta}+\dfrac{cos^2\beta}{cos^2\beta}}=\dfrac{1}{tan^2\alpha+1}-\dfrac{1}{tan^2\beta+1}\) (2)
(1);(2) suy ra đpcm
Giúp vs ạ: Cho tam giác ABC, chứng minh :
Sin A+Sin B+Sin C\(=\)4.Cos\(\dfrac{A}{2}\).Cos\(\dfrac{B}{2}\).Cos\(\dfrac{C}{2}\)
Cảmơn nhiều ạ>
Ta có : A+B+C= 180
=>sin(A+B)/2 = sin(180/2 - C/2) = cosC/2
ttcó: sinC/2 = cos(A+B)/2
=> sA+sB+sC =2cosC/2*cos(A-B)/2 + 2cos(A+B)/2*cosC/2
=2cosC/2
=4cosA/2cosB/2cosC/2
a) chứng minh không phụ thuộc vào x
Q= [(1-sinx-cos2x+sin3x)/(cosx+sin2x+cos3x)]*tan(x-(pi/2)
b) chứng minh:
cos 5x*cos 3x+sin 7x*sin x=2cos^3 2x -2 cos^2 x +1
1) Cho \(\cos a.\sin a=\frac{1}{5}\)Tính cot a
2) Chứng minh rằng
a)\(\frac{\cos a}{1-\sin a}=\frac{1+\sin a}{\cos a}\)
b)\(\frac{\left(\sin a+\cos a\right)^2-\left(\sin a-\cos a\right)^2}{\sin a.\cos a}=4\)
\(cosa.sina=\frac{1}{5}\Rightarrow\frac{cosa.sina}{sin^2a}=\frac{1}{5sin^2a}=\frac{sin^2a+cos^2a}{5sin^2a}\)
\(\Rightarrow\frac{cosa}{sina}=\frac{1}{5}+\frac{1}{5}.\frac{cos^2a}{sin^2a}\)
\(\Rightarrow cota=\frac{1}{5}+\frac{1}{5}cot^2a\)
\(\Rightarrow cot^2a-5cota+1=0\)
\(\Rightarrow cota=\frac{5\pm\sqrt{21}}{2}\)
Câu 2:
\(\frac{cosa}{1-sina}=\frac{cosa\left(1+sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{cosa\left(1+sina\right)}{1-sin^2a}=\frac{cosa\left(1+sina\right)}{cos^2a}=\frac{1+sina}{cosa}\)
b/
\(\frac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}\)
\(=\frac{sin^2a+cos^2a+2sina.cosa-\left(sin^2a+cos^2a-2sina.cosa\right)}{sina.cosa}\)
\(=\frac{4sina.cosa}{sina.cosa}\)
\(=4\)
chứng tỏ:
tan a = sin a/ cos a;
cot a = cos a/ sin a;
tan a . cot a =1;
sin^2 a+ cos^2 a =1
Cos + cos = 2 cos cos
cos - cos = - 2 sin sin
Sin + sin = 2 sin cos
sin - sin = 2 cos sin.
+Sin gấp đôi = 2 sin cos
+Cos gấp đôi = bình cos trừ bình sin
= - 1 + 2 lần bình cos
= + 1 - 2 lần bình sin
hoc đi các chế chơi gì tấm này :D
trả lời
lag ak bn
hok tốt
Cho tam giác ABC . chứng minh rằng :
sin A. cos B. Cos C + sin B. Cos C. Cos A + sin C . cos B .cos A = sin A . Sin B. Sin C
\(sinA.cosB.cosC+sinB.cosC.cosA+sinC.cosB.cosA\)
\(=cosC\left(sinA.cosB+cosA.sinB\right)+sinC.cosB.cosA\)
\(=cosC.sin\left(A+B\right)+sinC.cosB.cosA\)
\(=cosC.sinC+sinC.cosA.cosB\)
\(=sinC\left(cosC+cosA.cosB\right)=sinC\left(-cos\left(A+B\right)+cosA.cosB\right)\)
\(=sinC\left(-cosA.cosB+sinA.sinB+cosA.cosB\right)\)
\(=sinA.sinB.sinC\)
1.a) Chứng minh \(\dfrac{sin^4-cos^4}{sin+cos}=sin-cos\)
b) \(sin^6+cos^6+3cos^2\cdot sin^2=1\)