Những câu hỏi liên quan
LY
Xem chi tiết
1L
Xem chi tiết
NL
7 tháng 10 2021 lúc 8:12

Đề đúng: \(cos^2\alpha-cos^2\beta=sin^2\beta-sin^2\alpha=\dfrac{1}{1+tan^2\alpha}-\dfrac{1}{1+tan^2\beta}\)

Bình luận (1)
NL
7 tháng 10 2021 lúc 13:47

Áp dụng công thức: \(sin^2x+cos^2x=1\Rightarrow cos^2x=1-sin^2x\)

Ta có:

\(cos^2\alpha-cos^2\beta=\left(1-sin^2\alpha\right)-\left(1-sin^2\beta\right)=-sin^2\alpha+sin^2\beta=sin^2\beta-sin^2\alpha\) (1)

Lại có:

\(cos^2\alpha-cos^2\beta=\dfrac{cos^2\alpha}{1}-\dfrac{cos^2\beta}{1}=\dfrac{cos^2\alpha}{sin^2\alpha+cos^2\alpha}-\dfrac{cos^2\beta}{sin^2\beta+cos^2\beta}\)

\(=\dfrac{\dfrac{cos^2\alpha}{cos^2\alpha}}{\dfrac{sin^2\alpha}{cos^2\alpha}+\dfrac{cos^2\alpha}{cos^2\alpha}}-\dfrac{\dfrac{cos^2\beta}{cos^2\beta}}{\dfrac{sin^2\beta}{cos^2\beta}+\dfrac{cos^2\beta}{cos^2\beta}}=\dfrac{1}{tan^2\alpha+1}-\dfrac{1}{tan^2\beta+1}\) (2)

(1);(2) suy ra đpcm

Bình luận (0)
HC
Xem chi tiết
DQ
11 tháng 12 2017 lúc 20:03

Ta có : A+B+C= 180
=>sin(A+B)/2 = sin(180/2 - C/2) = cosC/2
ttcó: sinC/2 = cos(A+B)/2
=> sA+sB+sC =2cosC/2*cos(A-B)/2 + 2cos(A+B)/2*cosC/2
=2cosC/2
=4cosA/2cosB/2cosC/2

Bình luận (0)
CT
Xem chi tiết
TT
Xem chi tiết
NL
16 tháng 9 2019 lúc 20:31

\(cosa.sina=\frac{1}{5}\Rightarrow\frac{cosa.sina}{sin^2a}=\frac{1}{5sin^2a}=\frac{sin^2a+cos^2a}{5sin^2a}\)

\(\Rightarrow\frac{cosa}{sina}=\frac{1}{5}+\frac{1}{5}.\frac{cos^2a}{sin^2a}\)

\(\Rightarrow cota=\frac{1}{5}+\frac{1}{5}cot^2a\)

\(\Rightarrow cot^2a-5cota+1=0\)

\(\Rightarrow cota=\frac{5\pm\sqrt{21}}{2}\)

Bình luận (0)
NL
16 tháng 9 2019 lúc 20:34

Câu 2:

\(\frac{cosa}{1-sina}=\frac{cosa\left(1+sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{cosa\left(1+sina\right)}{1-sin^2a}=\frac{cosa\left(1+sina\right)}{cos^2a}=\frac{1+sina}{cosa}\)

b/

\(\frac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}\)

\(=\frac{sin^2a+cos^2a+2sina.cosa-\left(sin^2a+cos^2a-2sina.cosa\right)}{sina.cosa}\)

\(=\frac{4sina.cosa}{sina.cosa}\)

\(=4\)

Bình luận (0)
H24
Xem chi tiết
Xem chi tiết
CT
23 tháng 2 2020 lúc 14:09

trả lời

lag ak bn

hok tốt

Bình luận (0)
 Khách vãng lai đã xóa
LN
Xem chi tiết
NL
23 tháng 4 2019 lúc 16:30

\(sinA.cosB.cosC+sinB.cosC.cosA+sinC.cosB.cosA\)

\(=cosC\left(sinA.cosB+cosA.sinB\right)+sinC.cosB.cosA\)

\(=cosC.sin\left(A+B\right)+sinC.cosB.cosA\)

\(=cosC.sinC+sinC.cosA.cosB\)

\(=sinC\left(cosC+cosA.cosB\right)=sinC\left(-cos\left(A+B\right)+cosA.cosB\right)\)

\(=sinC\left(-cosA.cosB+sinA.sinB+cosA.cosB\right)\)

\(=sinA.sinB.sinC\)

Bình luận (0)
HM
Xem chi tiết