Những câu hỏi liên quan
H24
Xem chi tiết
TL
11 tháng 6 2021 lúc 20:45

a) Có: `1+tan^2a=1/(cos^2a)`

`<=> 1+(3/5)^2=1/(cos^2a)`

`=> cosa=\sqrt10/4`

`=> sina = \sqrt(1-cos^2a) = \sqrt6/4`

b) Có: `sin^2a + cos^2a=1`

`<=> sin^2a + (1/4)^2=1`

`=> sina=\sqrt15/4`

`=> tana = (sina)/(cosa) = \sqrt15`

 

Bình luận (3)
AT
11 tháng 6 2021 lúc 20:50

a) Giả sử tam giác ABC vuông tại B có \(tanA=\dfrac{3}{5}\)

\(\Rightarrow\dfrac{BC}{AB}=\dfrac{3}{5}\Rightarrow BC=\dfrac{3}{5}AB\Rightarrow AC=\sqrt{AB^2+\dfrac{9}{25}AB^2}=\dfrac{\sqrt{34}}{5}AB\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{5}{\sqrt{34}}\Rightarrow cosA=\dfrac{5}{\sqrt{34}}\)

\(AC=\dfrac{\sqrt{34}}{5}AB\Rightarrow AC=\dfrac{\sqrt{34}}{5}.\dfrac{5}{3}BC=\dfrac{\sqrt{34}}{3}BC\Rightarrow\dfrac{BC}{AC}=\dfrac{3}{\sqrt{34}}\)

\(\Rightarrow sinA=\dfrac{3}{\sqrt{34}}\)

b) cũng tương tự như câu a thôi,bạn tự tính nha

 

Bình luận (0)
LD
Xem chi tiết
AQ
Xem chi tiết
NM
9 tháng 10 2021 lúc 11:22

\(\sin^2\widehat{A}+\cos^2\widehat{A}=1\Leftrightarrow\cos^2\widehat{A}=1-\left(\dfrac{3}{5}\right)^2=1-\dfrac{9}{25}=\dfrac{16}{25}\\ \Leftrightarrow\cos\widehat{A}=\dfrac{4}{5}\\ \tan\widehat{A}=\dfrac{\sin\widehat{A}}{\cos\widehat{A}}=\dfrac{3}{4}\\ \Rightarrow\cot\widehat{A}=\dfrac{1}{\tan\widehat{A}}=\dfrac{4}{3}\)

Bình luận (0)
AQ
Xem chi tiết
AQ
Xem chi tiết
SS
Xem chi tiết
SS
19 tháng 8 2017 lúc 18:49

4

Bình luận (0)
TA
Xem chi tiết
NP
Xem chi tiết
TS
Xem chi tiết
TQ
15 tháng 10 2015 lúc 18:38

\(\tan\alpha=\frac{3}{2}\Rightarrow\frac{\sin\alpha}{\cos\alpha}=\frac{3}{2}\Rightarrow\sin\alpha=\frac{3}{2}\cos\alpha\)

\(\text{Suy ra: }\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}=\frac{\cos\alpha+\frac{3}{2}\cos\alpha}{\cos\alpha-\frac{3}{2}\cos\alpha}=\frac{\frac{5}{2}\cos\alpha}{-\frac{1}{2}\cos\alpha}=-5\)

Bình luận (0)