1. Cho đa thức f(x) biết:
f(x) + 3f(x) = x^2
Tính f(2)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Đề:1. Cho đa thức f(x) biết:
f(x) + 3f(x) = x^2
Tính f(2)
giải: +) cho x=2
=> f(2) + 3f(1/2)=4
+) cho 1/2
=> f(1/2) + 3f(2)=1/4
=> f(1/2) = 1/4 -3f(2)
Thay
Các bạn giúp mk giải tiếp với!!!!!!!!!!!!!!!!!!!!!!!!
cho f(x) là một đa thức thỏa mãn điều kiện 3f(x) + 2f(1-x) = 2x + 9 . Tính f(2)
Với \(x=2\): \(3f\left(2\right)+2f\left(-1\right)=2.2+9=13\)
Với \(x=-1\):\(3f\left(-1\right)+2f\left(2\right)=2.\left(-1\right)+9=7\)
Giải hệ trên thu được \(\hept{\begin{cases}f\left(2\right)=5\\f\left(-1\right)=-1\end{cases}}\).
Cho f(x) là một đa thức thỏa mãn điều kiện 3f(x) + 2f(1-x) = 2x+9. Tính f(2)
Ta có 3f(x) +2f(1-x)=2x+9\(\Rightarrow\)3f(2)+2f(1-2)=2.2+9\(\Leftrightarrow\)3f(2)-2f(2)=13\(\Rightarrow\)f(2)=13
cho f(x) là 1 đa thức thỏa mãn : 3f(x) +2f(1-x) = 2x+9 với mọi giá trị của x . tính f(2)
Có :
\(3.f\left(2\right)+2.f\left(1-2\right)=2.2+9\)
\(\Rightarrow3.f\left(2\right)+2.f\left(-1\right)=13\)
\(3.f\left(-1\right)+2.f\left(2\right)=2.\left(-1\right)+9\)
\(\Rightarrow3.f\left(-1\right)+2.f\left(2\right)=7\)
\(\Rightarrow\left[3.f\left(2\right)+2.f\left(-1\right)\right]-\left[3.f\left(-1\right)+2.f\left(2\right)\right]=13-7\)
\(\Rightarrow f\left(2\right)-f\left(-1\right)=6\)
\(\Rightarrow f\left(-1\right)=f\left(2\right)-6\)
Thay \(f\left(-1\right)=f\left(2\right)-6\)vào \(3.f\left(2\right)+2.f\left(-1\right)=13\)có:
\(3.f\left(2\right)+2.\left[f\left(2\right)-6\right]=13\)
\(3.f\left(2\right)+2.f\left(2\right)-12=13\)
\(5.f\left(2\right)=25\)
\(f\left(2\right)=\frac{25}{5}=5\)
Vậy ...
cho f(x) là 1 đa thức thỏa mãn : 3f(x) +2f(1-x) = 2x+9 với mọi giá trị của x . tính f(2)
Mình mới học lớp 6
Nên không biết nha
Chúc các bạn học giỏi
Ta có f(2)= 3f(2)+2f(-1)=2.2+9=13
f(-1)=3f(-1)+2f(2)=2.(-1)+9=7
=>f(-1)+f(2)=3f(2)+2f(-1)+3f(_1)+2f(2)=20
=:>5[f(2)+f(-1)]=20
=>f(2)+f(-1)=4
=>3f(2)+2f(_1)-3f(-1)-2f(2)=6
=>f(2)-f(-1)=6
=>f(2)+f(1)+f(2)+f(-1)=26
=>2f(2)=26
=>f(2)=13
Tìm đa thức f(x) biết 3f(x)+f(2-x)=x2, x∈R
cho đa thức f(x) thỏa mãn điều kiện f(x)+3f(\(\frac{1}{x}\))=x2 . hãy tìm f(2)
Ta có
Thay x = 1/2 : \(f\left(\frac{1}{2}\right)+3f\left(2\right)=\frac{1}{4}\)
Thay x = 2: \(f\left(2\right)+3f\left(\frac{1}{2}\right)=4\)
\(\Rightarrow\left[f\left(2\right)+3f\left(\frac{1}{2}\right)\right]-3\left[f\left(\frac{1}{2}\right)+3f\left(2\right)\right]=4-\frac{3}{4}\)
\(\Rightarrow-5f\left(2\right)=\frac{13}{4}\Leftrightarrow f\left(2\right)=-\frac{13}{20}\)
Ta có :
Thay x = 1/2 : ƒ (12 )+3ƒ (2)=14
Thay x = 2: ƒ (2)+3ƒ (12 )=4
⇒[ƒ (2)+3ƒ (12 )]−3[ƒ (12 )+3ƒ (2)]=4−34
Cho f(x) là 1 đa thức thỏa mãn 3f (x) + 2 f(1-x) = 2x + 9 với mọi x. Tìm giá trị của f(2).
Thay lần lượt \(x=2\) và \(x=-1\) vào biểu thức trên ta được hệ pt:
\(\left\{{}\begin{matrix}3f\left(2\right)+2f\left(-1\right)=13\\3f\left(-1\right)+2f\left(2\right)=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6f\left(-1\right)+9f\left(2\right)=39\\6f\left(-1\right)+4f\left(2\right)=14\end{matrix}\right.\)
\(\Leftrightarrow5f\left(2\right)=25\Rightarrow f\left(2\right)=5\)
cho đa thức p(x) có bậc 4 hệ số cao nhất là 1 thỏa mãn f(1)=-5, f(3)=-15, f(-2)=65 tính 3f(-3)+f(4)