CMR pt: m(x5-1)(x+3)+3x-8=0 có nghiệm với mọi m
Giúp mình bài này với cả nhà ơi :(((((((
cho hệ pt (m-1)x -2y =1
3x +my =1 (với m là hàm số )
1) giải hệ pt khi m=căn 3 +1
2)CMR với mọi giá trị của tham số m ,hệ pt có nghiệm duy nhất
3)tìm m để x-y-1=0
1) Thay \(m=\sqrt{3}+1\) vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}\left(\sqrt{3}+1-1\right)x-2y=1\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3}x-2y=1\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-2\sqrt{3}y=\sqrt{3}\\3x+\left(\sqrt{3}+1\right)y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{3}y-y\left(\sqrt{3}+1\right)=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\sqrt{3}y-\sqrt{3}y-y=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\left(-3\sqrt{3}-1\right)=\sqrt{3}-1\\3x-2\sqrt{3}y=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-\sqrt{3}+1}{3\sqrt{3}+1}\\3x-2\sqrt{3}\cdot\dfrac{-\sqrt{3}+1}{3\sqrt{3}+1}=\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-5+2\sqrt{3}}{13}\\3x=\sqrt{3}-\dfrac{12+10\sqrt{3}}{13}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-5+2\sqrt{3}}{13}\\x=\left(\dfrac{13\sqrt{3}-12-10\sqrt{3}}{13}\right)\cdot\dfrac{1}{3}=\dfrac{3\sqrt{3}-12}{13}\cdot\dfrac{1}{3}=\dfrac{\sqrt{3}-4}{13}\end{matrix}\right.\)
Vậy: Khi \(m=\sqrt{3}+1\) thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{3}-4}{13}\\y=\dfrac{-5+2\sqrt{3}}{13}\end{matrix}\right.\)
a. CMR: Với mọi tham số m phương trình \(\left(1-m^2\right)x^3-6x=1\) luôn có nghiệm
b. CMR PT \(x^3+2x=4+3\sqrt{3-2x}\) có đúng 1 nghiệm
c. CMR PT \(\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5=0\) có nghiệm với mọi m
a.
- Với \(m=\pm1\Rightarrow-6x=1\Rightarrow x=-\dfrac{1}{6}\) có nghiệm
Đặt \(f\left(x\right)=\left(1-m^2\right)x^3-6x-1\)
- Với \(\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\Rightarrow1-m^2>0\)
\(f\left(0\right)=-1< 0\)
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left[\left(1-m\right)^2x^3-6x-1\right]\)
\(=\lim\limits_{x\rightarrow-\infty}x^3\left(1-m^2-\dfrac{6}{m^2}-\dfrac{1}{m^3}\right)=-\infty\left(1-m^2\right)=+\infty\) dương
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-\infty;0\right)\)
- Với \(-1< m< 1\Rightarrow1-m^2< 0\)
\(\lim\limits_{x\rightarrow+\infty}\left[\left(1-m^2\right)x^3-6x-1\right]=\lim\limits_{x\rightarrow+\infty}x^3\left[\left(1-m^2\right)-\dfrac{6}{x^2}-\dfrac{1}{x^3}\right]=+\infty\left(1-m^2\right)=+\infty\) dương
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;+\infty\right)\)
Vậy pt đã cho có nghiệm với mọi m
b. Để chứng minh pt này có đúng 1 nghiệm thì cần áp dụng thêm kiến thức 12 (tính đơn điệu của hàm số). Chỉ bằng kiến thức 11 sẽ ko chứng minh được
c.
Đặt \(f\left(x\right)=\left(m-1\right)\left(x-2\right)^2\left(x-3\right)^3+2x-5\)
Do \(f\left(x\right)\) là hàm đa thức nên \(f\left(x\right)\) liên tục trên R
\(f\left(2\right)=4-5=-1< 0\)
\(f\left(3\right)=6-5=1>0\)
\(\Rightarrow f\left(2\right).f\left(3\right)< 0\) với mọi m
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (2;3) với mọi m
Hay pt đã cho luôn luôn có nghiệm
Bài 1 : Với m = ? , thì phương trình x2 - 3x + m -1 = 0 có hai nghiệm x1 ; x2 thỏa mãn : 2x1 - 5x2 = -8
Bài 2 : Với m < .... thì phương trình x2 + 2(m-2)x - 2m + 1 = 0 có hai nghiệm dương . ( kết quả dạng số thập phân )
( mọi người ơi giải giúp mình với !!! - đúng nhận 3 like )
\(\Delta'=b'^2-ac=m^2-4m+4-2m+1=m^2-6m+5=\left(m-1\right)\left(m-5\right)\)
để pt có 2 nguyện dương =>\(\left(m-1\right)\left(m-5\right)\ge0\Rightarrow\)m>5 hoặc m<1
1 \(\Delta\)=b2-4ac
=9-4{m-1}\(\ge0\)
\(\int^{x_1+x_2=\frac{-b}{a}=3}_{x_1.x_2=\frac{c}{a}=m-1}\)
them ph cua bn nua la ra hpt tim dc x1 x2
hình như cả 2 câu đều dùng vi-et hết đúng ko nhỉ ?
Bài 1 : Với m = ? , thì phương trình x2 - 3x + m -1 = 0 có hai nghiệm x1 ; x2 thỏa mãn : 2x1 - 5x2 = -8
Bài 2 : Với m < .... thì phương trình x2 + 2(m-2)x - 2m + 1 = 0 có hai nghiệm dương . ( kết quả dạng số thập phân )
( mọi người ơi giải giúp mình với !!! - đúng nhận 3 like )
Bài 1:
\(\Delta=\left(-3\right)^2-4\left(m-1\right)=-4m+4+9=-4m+13\)
Để phương trình có hai nghiệm phân biệt thì -4m+13>0
=>-4m>-13
hay m<13/4
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m-1\end{matrix}\right.\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-5x_2=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=6\\2x_1-5x_2=-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x_2=14\\x_1+x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2\\x_1=1\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=m-1\)
nên m-1=2
hay m=3
Bài 2:
\(\Delta=\left(2m-4\right)^2-4\cdot\left(-2m+1\right)\)
\(=4m^2-16m+16+8m-4\)
\(=4m^2-8m+12\)
\(=4m^2-8m+4+8=\left(2m-2\right)^2+8>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Để phương trình có hai nghiệm dương thì \(\left\{{}\begin{matrix}-2\left(m-2\right)>0\\-2m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)
Bài 1 : Với m = ? , thì phương trình x2 - 3x + m -1 = 0 có hai nghiệm x1 ; x2 thỏa mãn : 2x1 - 5x2 = -8
Bài 2 : Với m < .... thì phương trình x2 + 2(m-2)x - 2m + 1 = 0 có hai nghiệm dương . ( kết quả dạng số thập phân )
( mọi người ơi giải giúp mình với !!! - đúng nhận 3 like )
Bài 1:
\(\Delta=\left(-3\right)^2-4\left(m-1\right)=-4m+4+9=-4m+13\)
Để phương trình có hai nghiệm phân biệt thì -4m+13>0
=>-4m>-13
hay m<13/4
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m-1\end{matrix}\right.\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-5x_2=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=6\\2x_1-5x_2=-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x_2=14\\x_1+x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2\\x_1=1\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=m-1\)
nên m-1=2
hay m=3
Bài 2:
\(\Delta=\left(2m-4\right)^2-4\cdot\left(-2m+1\right)\)
\(=4m^2-16m+16+8m-4\)
\(=4m^2-8m+12\)
\(=4m^2-8m+4+8=\left(2m-2\right)^2+8>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Để phương trình có hai nghiệm dương thì \(\left\{{}\begin{matrix}-2\left(m-2\right)>0\\-2m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)
Bài 1 : Với m = ? , thì phương trình x2 - 3x + m -1 = 0 có hai nghiệm x1 ; x2 thỏa mãn : 2x1 - 5x2 = -8
Bài 2 : Với m < .... thì phương trình x2 + 2(m-2)x - 2m + 1 = 0 có hai nghiệm dương . ( kết quả dạng số thập phân )
( mọi người ơi giải giúp mình với !!! - đúng nhận 3 like )
1.
đk để pt có nghiệm \(\Delta\)>0 \(\Leftrightarrow\) (-3)2 -4(m-1) >0 \(\Leftrightarrow m< \dfrac{13}{4}\)
theo viet ta có :\(\left\{{}\begin{matrix}x_1+x_2=3\left(1\right)\\x_1\cdot_{ }x_2=m-1\left(2\right)\end{matrix}\right.\)
có 2x1-5x2=-8 (3)
kết hợp (1) , (3) :\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-5x_2=-8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5x_1+5x_2=15\\2x_1-5x_2=-8\end{matrix}\right.\)
cộng vế trên cho vế dưới :7x1=7\(\Rightarrow\)x1=1
có (1) : x1+x2=3 \(\Rightarrow\) x2=3-x1\(\Rightarrow\)x2=3-1=2
thay x1 và x2 vừa tìm đc vào (2) ta đươc \(1\cdot2=m-1\Leftrightarrow m=3\)(tm)
vậy m=3
2. đk để pt có 2 ng dương
\(\left\{{}\begin{matrix}\Delta'\ge0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)^2-4\left(-2m+1\right)\ge0\\x_1+x_2=-2\left(m-2\right)>0\\x_1\cdot x_2=-2m+1>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2\ge0\forall m\\m< 2\\m< \dfrac{1}{ }\end{matrix}\right.\)\(\Leftrightarrow m< \dfrac{1}{2}\) = 0,5
vậy m < 0,5
Bài 1 : Với m = ? , thì phương trình x2 - 3x + m -1 = 0 có hai nghiệm x1 ; x2 thỏa mãn : 2x1 - 5x2 = -8
Bài 2 : Với m < .... thì phương trình x2 + 2(m-2)x - 2m + 1 = 0 có hai nghiệm dương . ( kết quả dạng số thập phân )
( mọi người ơi giải giúp mình với !!! - đúng nhận 3 like )
2/
Xét pt (1) có:
\(\Delta=4\left(m-2\right)^2-4.\left(-2m+1\right)\)
= \(4m^2-8m+12\)
= \(\left(2m-2\right)^2+8\)
Ta có: \(\left(2m-2\right)^2\ge0\) với mọi m
\(\Rightarrow\left(2m-2\right)^2+8>0\) với mọi m
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt với mọi m
Áp ụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=4-2m\\x_1.x_2=1-2m\end{matrix}\right.\)
Để pt có 2 nghiệm dương \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2>0\\x_1.x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4-2m>0\\1-2m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m< \dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow m< \dfrac{1}{2}\)
Vậy với \(m< \dfrac{1}{2}\) thì pt đã cho có 2 nghiệm dương
Bài 1 : Với m = ? , thì phương trình x2 - 3x + m -1 = 0 có hai nghiệm x1 ; x2 thỏa mãn : 2x1 - 5x2 = -8
Bài 2 : Với m < .... thì phương trình x2 + 2(m-2)x - 2m + 1 = 0 có hai nghiệm dương . ( kết quả dạng số thập phân )
( mọi người ơi giải giúp mình với !!! - đúng nhận 3 like )
Bài 1:
\(\Delta=\left(-3\right)^2-4\left(m-1\right)=-4m+4+9=-4m+13\)
Để phương trình có hai nghiệm phân biệt thì -4m+13>0
=>-4m>-13
hay m<13/4
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m-1\end{matrix}\right.\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1+x_2=3\\2x_1-5x_2=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=6\\2x_1-5x_2=-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x_2=14\\x_1+x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2\\x_1=1\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=m-1\)
nên m-1=2
hay m=3
Bài 2:
\(\Delta=\left(2m-4\right)^2-4\cdot\left(-2m+1\right)\)
\(=4m^2-16m+16+8m-4\)
\(=4m^2-8m+12\)
\(=4m^2-8m+4+8=\left(2m-2\right)^2+8>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Để phương trình có hai nghiệm dương thì \(\left\{{}\begin{matrix}-2\left(m-2\right)>0\\-2m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)
Bài 1 : Với m = ? , thì phương trình x2 - 3x + m -1 = 0 có hai nghiệm x1 ; x2 thỏa mãn : 2x1 - 5x2 = -8
Bài 2 : Với m < .... thì phương trình x2 + 2(m-2)x - 2m + 1 = 0 có hai nghiệm dương . ( kết quả dạng số thập phân )
( mọi người ơi giải giúp mình với !!! - đúng nhận 3 like )