giải bất phương trinh
\(\left(x-1\right)\sqrt{x^2-3x+4}>x^2-3x+2.\)
Giải bất phương trinh
\(\left(x-1\right)\sqrt{x^2-3x+4}>x^2-3x+2\)
\(\Leftrightarrow\left(x-1\right)\sqrt{x^2-3x+4}-\left(x-1\right)\left(x-2\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left(\sqrt{x^2-3x+4}-x+2\right)>0\)
TH1: \(\left\{{}\begin{matrix}x>1\\\sqrt{x^2-3x+4}>x-2\end{matrix}\right.\)
- Với \(1< x\le2\) BPT luôn đúng
- Với \(x>2\Rightarrow\left\{{}\begin{matrix}x>1\\x^2-3x+4>x^2-4x+4\end{matrix}\right.\) \(\Rightarrow x>1\)
TH2: \(\left\{{}\begin{matrix}x< 1\\\sqrt{x^2-3x+4}< x-2\end{matrix}\right.\) (vô nghiệm)
Vậy nghiệm của BPT là \(x>1\)
Giải bất phương trình: \(\sqrt[4]{\left(x-2\right).\left(4-x\right)}+\sqrt[4]{x-2}+\sqrt[4]{4-x}+6x\sqrt{3x}\le x^3+30\)
giải bất phương trình vô tỉ sau
\(\sqrt[4]{\left(x-3\right)\left(5-x\right)}+\sqrt[4]{x-3}+\sqrt[4]{5-x}+6\left(x-1\right)\sqrt{3\left(x-1\right)}< =x^3-3x^2+3x+29\)
Giải bất phương trình: \(3\left(x-2\right)+\sqrt{3x-4}< 3\sqrt{2x+1}+\sqrt{x-3}\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2\left(3x-2\right)\left(x^2-1\right)}{\left(-x^2+2x-3\right)\left(2-x\right)^2}\ge0\)
b) \(\dfrac{x-5}{x-1}>2\)
c) \(2x-\sqrt{x^2-5x-14}< 1\)
d) \(x+\sqrt{x^2-4x-5}< 4\)
e) \(\left\{{}\begin{matrix}\left(4-x\right)\left(x^2-2x-3\right)< 0\\x^2\ge\left(x^2-x-3\right)^2\end{matrix}\right.\)
Giải pt, bất pt
a) \(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}=2x\right)\)
b) \(\left(x^2-3x+2\right)\left(x^2-12x+32\right)\le4x^2\)
c) \(2\sqrt{3x+7}-5\sqrt[3]{x-6}=4\)
Giải phương trình
\(-3x^2+x+3+\left(\sqrt{3x+2}-4\right)\sqrt{3x-2x^2}+\left(x-1\right)\sqrt{3x+2}=0\)
Giải bất phương trình sau:
a) \(2x^2-3x+2\le\sqrt{3x-2}\)
b) \(3\left(2x^2-x\sqrt{x^2+3}\right)< 2\left(1-x^4\right)\)
Giải bất phương trình : \(^{x^2-3x+3\ge\left(4+3x-\frac{4}{x}\right)\sqrt{x-1}}\)