Những câu hỏi liên quan
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 16:07

Ta có

\(\begin{array}{l}\cot x{\rm{ }} = {\rm{  - 1}}\\ \Leftrightarrow \cot x{\rm{ }} = {\rm{ cot  - }}\frac{\pi }{4}\\ \Leftrightarrow x{\rm{ }} = {\rm{  - }}\frac{\pi }{4} + k\pi ;k \in Z\end{array}\)

Vậy phương trình đã cho có  nghiệm là \(x{\rm{ }} = {\rm{  - }}\frac{\pi }{4} + k\pi ;k \in Z\)

Chọn A

Bình luận (0)
NP
Xem chi tiết
LN
28 tháng 7 2019 lúc 10:01
https://i.imgur.com/Zdtaxi4.jpg
Bình luận (1)
NP
Xem chi tiết
PT
Xem chi tiết
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 15:20

\(\begin{array}{l}A = \cos \left( {x + \frac{\pi }{6}} \right)\cos \left( {x - \frac{\pi }{6}} \right) = \frac{1}{2}\left[ {\cos \left( {x + \frac{\pi }{6} + x - \frac{\pi }{6}} \right) + \cos \left( {x + \frac{\pi }{6} - x + \frac{\pi }{6}} \right)} \right]\\A = \frac{1}{2}\left[ {\cos 2x + \cos \frac{\pi }{3}} \right] = \frac{1}{2}\left( {\frac{1}{4} + \frac{1}{2}} \right) = \frac{3}{8}\end{array}\)

\(\begin{array}{l}B = \sin \left( {x + \frac{\pi }{3}} \right)\sin \left( {x - \frac{\pi }{3}} \right) =  - \frac{1}{2}\left[ {\cos \left( {x + \frac{\pi }{3} + x - \frac{\pi }{3}} \right) - \cos \left( {x + \frac{\pi }{3} - x + \frac{\pi }{3}} \right)} \right]\\B =  - \frac{1}{2}\left( {\cos 2x - \cos \frac{{2\pi }}{3}} \right) =  - \frac{1}{2}\left( {\frac{1}{4} + \frac{1}{2}} \right) =  - \frac{3}{8}\end{array}\)

Bình luận (0)
PT
Xem chi tiết
NP
Xem chi tiết
NP
Xem chi tiết
NL
20 tháng 10 2019 lúc 17:25

Nhận thấy \(cosx-0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)

\(tan^2x+\left(\sqrt{3}-1\right)tanx-\sqrt{3}=0\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 22:45

a) Ta có:

      \(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x\cos \frac{\pi }{4} + \cos x\sin \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x.\frac{{\sqrt 2 }}{2} + \cos x.\frac{{\sqrt 2 }}{2}} \right) = \sin x + \cos x\)

b) Ta có:

\(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{\tan \frac{\pi }{4} - \tan x}}{{1 + \tan \frac{\pi }{4}\tan x}} = \frac{{1 - \tan x}}{{1 + \tan x}}\;\)

Bình luận (0)