Những câu hỏi liên quan
UN
Xem chi tiết
DH
23 tháng 4 2021 lúc 23:05

\(\sqrt{sin^2x+sin^2xcotx+cos^2x+cos^2xtanx}\)

\(\sqrt{sin^2x+sin^2x.\dfrac{cosx}{sinx}+cos^2x+cos^2x.\dfrac{sinx}{cosx}}\)

\(=\sqrt{sin^2x+sinxcosx+cos^2x+sinxcosx}\)

\(\sqrt{sin^2x+2sinxcosx+cos^2x}\)

\(\sqrt{\left(sinx+cosx\right)^2}\)

Bình luận (0)
H24
Xem chi tiết
LP
24 tháng 10 2023 lúc 5:16

Ta có \(\tan x-\cot x=m\) \(\Leftrightarrow\tan^2x+\cot^2x=m+1\)

\(\Leftrightarrow\dfrac{1}{\cos^2x}-1+\dfrac{1}{\sin^2x}-1=m+1\)

\(\Leftrightarrow A=\sqrt{\dfrac{1}{\sin^2x}+\dfrac{1}{\cos^2x}-9}=\sqrt{m-6}\)

Bình luận (0)
LH
Xem chi tiết
NL
24 tháng 7 2020 lúc 13:22

Bạn ghi đề chính xác ra đi, câu a và câu b đó bạn

Câu a sau \(\frac{4}{cotx}\) còn dấu + nhưng không biết cộng với cái gì

Câu b biểu thức cos đầu tiên là \(cos^2\left(x+\frac{\pi}{3}\right)\) hay \(cos\left(2x+\frac{2\pi}{3}\right)\)

Bình luận (0)
AH
24 tháng 7 2020 lúc 14:08

a) Đề thiếu

b)

PT $\Leftrightarrow 1-2\sin^2(x+\frac{\pi}{3})+4\cos (\frac{\pi}{6}-x)-\frac{5}{2}=0$

$\Leftrightarrow 1-2\sin ^2[\frac{\pi}{2}-(\frac{\pi}{6}-x)]+4\cos (\frac{\pi}{6}-x)-\frac{5}{2}=0$

$\Leftrightarrow -2\cos ^2(\frac{\pi}{6}-x)+4\cos (\frac{\pi}{6}-x)-\frac{3}{2}=0$

$\Leftrightarrow -2t^2+4t-\frac{3}{2}=0$ với $t=\cos (\frac{\pi}{6}-x)$

Đến đây bạn giải pt bậc 2 thu được $\cos (\frac{\pi}{6}-x)=\frac{1}{2}$

$\Rightarrow x=2k\pi +\frac{\pi}{2}$ hoặc $x=2k\pi -\frac{\pi}{6}$ với $k$ nguyên

Bình luận (0)
AH
24 tháng 7 2020 lúc 14:14

c)

ĐK:.............

PT $\Leftrightarrow 1+\frac{\sin ^2x}{\cos ^2x}-1+\tan x-\sqrt{3}(\tan x+1)=0$

$\Leftrightarrow \tan ^2x+\tan x-\sqrt{3}(\tan x+1)=0$

$\Leftrightarrow \tan ^2x+(1-\sqrt{3})\tan x-\sqrt{3}=0$

$\Rightarrow \tan x=\sqrt{3}$ hoặc $\tan x=-1$

$\Rightarrow x=\pi (k-\frac{1}{4})$ hoặc $x=\pi (k+\frac{1}{3})$ với $k$ nguyên

d)

ĐK:.......

PT $\Leftrightarrow \tan x-\frac{2}{\tan x}+1=0$

$\Leftrightarrow \tan ^2x+\tan x-2=0$

$\Leftrightarrow (\tan x-1)(\tan x+2)=0$

$\Rightarrow \tan x=1$ hoặc $\tan x=-2$

$\Rightarrow x=k\pi +\frac{\pi}{4}$ hoặc $x=k\pi +\tan ^{-2}(-2)$ với $k$ nguyên.

Bình luận (0)
NT
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
NC
Xem chi tiết
MK
Xem chi tiết
HN
29 tháng 4 2020 lúc 21:32

\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)

\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)

b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)

=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)

d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)

\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)

=\(\frac{1}{cosx.sinx}=VP\)

e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)

c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)

=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)

\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)

Đây nha bạn

Bình luận (0)
NV
Xem chi tiết
NL
7 tháng 11 2019 lúc 14:48

a/ \(cosx>0\Rightarrow cosx=\sqrt{1-sin^2x}=\frac{4}{5}\)

\(\Rightarrow tanx=-\frac{3}{4}\Rightarrow A=\frac{129}{20}\)

b/ \(B=\frac{5sinx+3cosx}{3cosx-2sinx}=\frac{\frac{5sinx}{sinx}+\frac{3cosx}{sinx}}{\frac{3cosx}{sinx}-\frac{2sinx}{sinx}}=\frac{5+3cotx}{3cotx-2}=\frac{5+9}{9-2}\)

c/ \(C=\frac{sinx.cosx\left(cotx-2tanx\right)}{sinx.cosx\left(5cotx+tanx\right)}=\frac{cos^2x-2sin^2x}{5cos^2x+sin^2x}=\frac{cos^2x-2\left(1-cos^2x\right)}{5cos^2x+1-cos^2x}=\frac{3cos^2x-2}{4cos^2x+1}=...\)

d/ Không dịch được đề, ko biết mẫu số bên trái nó đến đâu cả

Bình luận (0)
 Khách vãng lai đã xóa