Những câu hỏi liên quan
KH
Xem chi tiết
NT
10 tháng 5 2023 lúc 19:40

=>căn 2x1=x2-1

=>2x1=x2^2-2x2+1

=>x2^2-2(x1+x2)+1=0

=>x2^2-2(2m+1)+1=0

=>x2^2=4m+2-1=4m+1

=>\(x_2=\pm\sqrt{4m+1}\)

=>\(x_1=2m+1\pm\sqrt{4m+1}\)

x1*x2=m^2-m

=>m^2-m=4m+1\(\pm2m+1\)

=>m^2-5m-1=\(\pm2m+1\)

TH1: m^2-5m-1=2m+1

=>m^2-7m-2=0

=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)

TH2: m^2-5m-1=-2m-1

=>m^2-3m=0

=>m=0; m=3

Bình luận (0)
H24
Xem chi tiết
NT
13 tháng 5 2021 lúc 21:40

Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot1\cdot\left(m^2-2\right)\)

\(=4m^2-4m+1-4m^2+8\)

\(=-4m+9\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

\(\Leftrightarrow-4m+9>0\)

\(\Leftrightarrow-4m>-9\)

hay \(m< \dfrac{9}{4}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1\cdot x_2=m^2-2\end{matrix}\right.\)

Ta có: \(\left|x_1-x_2\right|=\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x_1-x_2\right)^2}=\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{5}\)

\(\Leftrightarrow\left(2m-1\right)^2-4\cdot\left(m^2-2\right)=5\)

\(\Leftrightarrow4m^2-4m+1-4m^2+8=5\)

\(\Leftrightarrow-4m=-4\)

hay m=1(thỏa ĐK)

Vậy: m=1

Bình luận (0)
H24
13 tháng 5 2021 lúc 21:38

PT có 2 nghiệm phân biệt

`<=>Delta>0`

`<=>(2m-1)^2-4(m^2-2)>0`

`<=>4m^2-4m+1-4m^2+8>0`

`<=>-4m+9>0`

`<=>m<9/4`

Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`

`|x_1-x_2|=\sqrt5`

`<=>(x_1-x_2)^2=5`

`<=>(x_1+x_2)^2-4(x_1.x_2)=5`

`<=>4m^2-4m+1-4m^2+8=5`

`<=>-4m+8=5`

`<=>4m=3`

`<=>m=3/4(tm)`

Vậy `m=3/4=>|x_1-x_2|=\sqrt5`

Bình luận (0)
H24
13 tháng 5 2021 lúc 21:41

PT có 2 nghiệm phân biệt

`<=>Delta>0`

`<=>(2m-1)^2-4(m^2-2)>0`

`<=>4m^2-4m+1-4m^2+8>0`

`<=>-4m+9>0`

`<=>m<9/4`

Áp dụng vi-ét:`x_1+x_2=2m-1,x_1.x_2=m^2-2`

`|x_1-x_2|=\sqrt5`

`<=>(x_1-x_2)^2=5`

`<=>(x_1+x_2)^2-4(x_1.x_2)=5`

`<=>4m^2-4m+1-4m^2+8=5`

`<=>-4m+9=5`

`<=>4m=4`

`<=>m=1(tm)`

Vậy `m=1=>|x_1-x_2|=\sqrt5`

Bình luận (0)
DD
Xem chi tiết
KH
Xem chi tiết
NT
10 tháng 5 2023 lúc 19:40

=>căn 2x1=x2-1

=>2x1=x2^2-2x2+1

=>x2^2-2(x1+x2)+1=0

=>x2^2-2(2m+1)+1=0

=>x2^2=4m+2-1=4m+1

=>\(x_2=\pm\sqrt{4m+1}\)

=>\(x_1=2m+1\pm\sqrt{4m+1}\)

x1*x2=m^2-m

=>m^2-m=4m+1\(\pm2m+1\)

=>m^2-5m-1=\(\pm2m+1\)

TH1: m^2-5m-1=2m+1

=>m^2-7m-2=0

=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)

TH2: m^2-5m-1=-2m-1

=>m^2-3m=0

=>m=0; m=3

Bình luận (0)
DH
Xem chi tiết
LL
12 tháng 11 2021 lúc 6:54

Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.

Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.

Bước 3. Đối chiếu với điều kiện và kết luận bài toán.

xem tr sách của anh

Bình luận (0)
NM
12 tháng 11 2021 lúc 7:05

Bài 1:

PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(m+2\right)^2-4\cdot2\ge0\Leftrightarrow m^2+4m-8\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-2-2\sqrt{3}\\m\ge-2+2\sqrt{3}\end{matrix}\right.\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2\end{matrix}\right.\)

Ta có \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{9}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=9x_1x_2\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=18\\ \Leftrightarrow2\left(m+2\right)^2-8=18\\ \Leftrightarrow2m^2+8m+8-8=18\\ \Leftrightarrow m^2+4m-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{13}\\m=-2-\sqrt{13}\end{matrix}\right.\left(tm\right)\)

Bình luận (11)
NM
Xem chi tiết
NM
4 tháng 1 2022 lúc 9:29

PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=\left(2m-3\right)^2-4\left(m-3\right)=9>0\)

Vậy PT có 2 nghiệm phân biệt với mọi m

Ta có \(\left[{}\begin{matrix}x_1=\dfrac{2m-3+3}{2}=m\\x_2=\dfrac{2m-3-3}{2}=m-3\end{matrix}\right.\)

Ta thấy \(m>m-3\) nên \(1< m-3< m< 6\Leftrightarrow4< m< 6\)

Vậy \(4< m< 6\)  thỏa yêu cầu đề

Bình luận (0)
LN
Xem chi tiết
AH
3 tháng 4 2022 lúc 12:43

Lời giải:
Để pt có 2 nghiệm thì:
$\Delta'=(m^2+2m)^2-(m^2+7)\geq 0$

$\Leftrightarrow m^4+4m^3+3m^2-7\geq 0(*)$
Áp dụng định lý Viet:

$x_1+x_2=2m(m+2)$

$x_1x_2=m^2+7$

Khi đó:

$x_1x_2-2(x_1+x_2)=4$

$\Leftrightarrow m^2+7-4m(m+2)=4$

$\Leftrightarrow -3m^2-8m+3=0$

$\Leftrightarrow (1-3m)(m+3)=0$

$\Leftrightarrow m=\frac{1}{3}$ hoặc $m=-3$

Thử lại với $(*)$ thấy đều không thỏa mãn

Vậy không tồn tại $m$ thỏa mãn đkđb

Bình luận (0)
KC
Xem chi tiết
NT
21 tháng 4 2021 lúc 19:52

Sửa đề: \(x_2^2-x_1^2=2\)

Ta có: \(\Delta=\left[-\left(m-3\right)\right]^2-4\cdot1\cdot\left(-2m+2\right)\)

\(=\left(m-3\right)^2-4\left(-2m+2\right)\)

\(=m^2-6m+9+8m-8\)

\(=m^2+2m+1\)

\(=\left(m+1\right)^2\ge0\forall m\)

Do đó: Phương trình luôn có hai nghiệm với mọi m

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=m-3\\x_1\cdot x_2=-2m+2\end{matrix}\right.\)

Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4\cdot x_1x_2\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=\left(m-3\right)^2-4\left(-2m+2\right)\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=m^2-6m+9+8m-8=m^2-2m+1\)

\(\Leftrightarrow x_1-x_2=m-1\)

Ta có: \(x_2^2-x_1^2=2\)

\(\Leftrightarrow\left(x_2-x_1\right)\left(x_2+x_1\right)=2\)

\(\Leftrightarrow\left(1-m\right)\left(m-3\right)=2\)

\(\Leftrightarrow m-3-m^2+3m-2=0\)

\(\Leftrightarrow-m^2+4m-5=0\)

\(\Leftrightarrow m^2-4m+5=0\)(Vô lý)

Vậy: Không có giá trị nào của m để phương trình có hai nghiệm thỏa mãn \(x_2^2-x_1^2=2\)

Bình luận (1)
NL
21 tháng 4 2021 lúc 23:01

\(\Delta=\left(m-3\right)^2-4\left(-2m+2\right)=\left(m+1\right)^2\ge0\) ;\(\forall m\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-3\\x_1x_2=-2m+2\end{matrix}\right.\)

\(x_2^2-x_1=2\Leftrightarrow x_2\left(x_1+x_2\right)-x_1x_2-x_1=2\)

\(\Leftrightarrow\left(m-3\right)x_2+2m-2-x_1=2\)

\(\Leftrightarrow\left(m-2\right)x_2-\left(x_1+x_2\right)+2m-4=0\)

\(\Leftrightarrow\left(m-2\right)x_2-m+3+2m-4=0\)

\(\Leftrightarrow\left(m-2\right)x_2=-m+1\Rightarrow x_2=\dfrac{-m+1}{m-2}\)

\(\Rightarrow x_1=m-3-x_2=\dfrac{m^2-4m+5}{m-2}\)

Thế vào \(x_1x_2=-2m+2\)

\(\Rightarrow\left(\dfrac{-m+1}{m-2}\right)\left(\dfrac{m^2-4m+5}{m-2}\right)=-2m+2\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\\dfrac{m^2-4m+5}{\left(m-2\right)^2}=2\left(1\right)\end{matrix}\right.\)

(1) \(\Leftrightarrow m^2-4m+5=2m^2-8m+8\)

\(\Leftrightarrow m^2-4m+3=0\Rightarrow\left[{}\begin{matrix}m=1\\m=3\end{matrix}\right.\)

Bình luận (0)
KC
Xem chi tiết
NL
21 tháng 4 2021 lúc 12:25

Đây chắc chắn là 1 đề bài sai (pt giải ra m là 1 pt bậc 3 hệ số xấu)

Bạn kiểm tra kĩ lại đề bài, phần hệ số các ẩn của pt bậc 2 ấy

Bình luận (0)
H24
Xem chi tiết
PL
9 tháng 4 2023 lúc 15:05

a: Khi m = -4 thì:

\(x^2-5x+\left(-4\right)-2=0\)

\(\Leftrightarrow x^2-5x-6=0\)

\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)

Pt có 2 nghiệm phân biệt:

\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)

Bình luận (1)
PL
9 tháng 4 2023 lúc 15:19

b: \(\Delta=\left(-5\right)^2-4\left(m-2\right)=25-4m+8=33-4m\)

Theo viet:

\(x_1+x_2=-\dfrac{b}{a}=5\)

\(x_1x_2=\dfrac{c}{a}=m-2\)

Để pt có 2 nghiệm dương phân biệt:

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}33-4m>0\\5>0\left(TM\right)\\m-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{33}{4}\\x>2\end{matrix}\right.\Leftrightarrow m=2< m< \dfrac{33}{4}\)

Vậy \(2< m< \dfrac{33}{4}\) thì pt có 2 nghiệm dương phân biệt.

Theo đầu bài: \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\)

\(\Leftrightarrow\sqrt{x_1}+\sqrt{x_2}=\dfrac{3}{2}\left(\sqrt{x_1x_2}\right)\)

\(\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=\dfrac{9}{4}x_1x_2\)

\(\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=\dfrac{9}{4}x_1x_2\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=\dfrac{9}{4}x_1x_2\)

\(\Leftrightarrow5+2\sqrt{x_1x_2}=\dfrac{9}{4}\left(m-2\right)\)

\(\Leftrightarrow\dfrac{9}{4}\left(m-2\right)-2\sqrt{m-2}-5=0\)

Đặt \(\sqrt{m-2}=t\Rightarrow m-2=t^2\)

\(\Rightarrow\dfrac{9}{4}t^2-2t-5=0\)

\(\Leftrightarrow\dfrac{9}{4}t^2-2+\left(-5\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(9t+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-2=0\\9t+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=2\left(TM\right)\\t=-\dfrac{10}{9}\left(\text{loại}\right)\end{matrix}\right.\)

Trả ẩn:

\(\sqrt{m-2}=2\)

\(\Rightarrow m-2=4\)

\(\Rightarrow m=6\)

Vậy m = 6 thì x1 , x2 thoả mãn hệ thức \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=\dfrac{3}{2}\).

Bình luận (1)