Những câu hỏi liên quan
AD
Xem chi tiết
H24
Xem chi tiết
NL
5 tháng 3 2021 lúc 17:44

1.a.

\(\left(x+1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)\ge m\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x^2+3x-10\right)\ge m\)

Đặt \(x^2+3x-10=t\ge-\dfrac{49}{4}\)

\(\Rightarrow\left(t+2\right)t\ge m\Leftrightarrow t^2+2t\ge m\)

Xét \(f\left(t\right)=t^2+2t\) với \(t\ge-\dfrac{49}{4}\)

\(-\dfrac{b}{2a}=-1\) ; \(f\left(-1\right)=-1\) ; \(f\left(-\dfrac{49}{4}\right)=\dfrac{2009}{16}\)

\(\Rightarrow f\left(t\right)\ge-1\)

\(\Rightarrow\) BPT đúng với mọi x khi \(m\le-1\)

Có 30 giá trị nguyên của m

Bình luận (0)
NL
5 tháng 3 2021 lúc 17:50

1b.

Với \(x=0\)  BPT luôn đúng

Với \(x\ne0\) BPT tương đương:

\(\dfrac{\left(x^2-2x+4\right)\left(x^2+3x+4\right)}{x^2}\ge m\)

\(\Leftrightarrow\left(x+\dfrac{4}{x}-2\right)\left(x+\dfrac{4}{x}+3\right)\ge m\)

Đặt \(x+\dfrac{4}{x}-2=t\) \(\Rightarrow\left[{}\begin{matrix}t\ge2\\t\le-6\end{matrix}\right.\)

\(\Rightarrow t\left(t+5\right)\ge m\Leftrightarrow t^2+5t\ge m\)

Xét hàm \(f\left(t\right)=t^2+5t\) trên \(D=(-\infty;-6]\cup[2;+\infty)\)

\(-\dfrac{b}{2a}=-\dfrac{5}{2}\notin D\) ; \(f\left(-6\right)=6\) ; \(f\left(2\right)=14\)

\(\Rightarrow f\left(t\right)\ge6\)

\(\Rightarrow m\le6\)

Vậy có 37 giá trị nguyên của m thỏa mãn

Bình luận (0)
NL
5 tháng 3 2021 lúc 17:56

2.

Xét với \(x\ge1\)

\(m\left(x+1\right)+3\left(x-1\right)-2\sqrt{x^2-1}=0\)

\(\Leftrightarrow m+3\left(\dfrac{x-1}{x+1}\right)-2\sqrt{\dfrac{x-1}{x+1}}=0\)

Đặt \(\sqrt{\dfrac{x-1}{x+1}}=t\Rightarrow0\le t< 1\)

\(\Rightarrow m+3t^2-2t=0\)

\(\Leftrightarrow3t^2-2t=-m\)

Xét hàm \(f\left(t\right)=3t^2-2t\) trên \(D=[0;1)\)

\(-\dfrac{b}{2a}=\dfrac{1}{3}\in D\) ; \(f\left(0\right)=0\) ; \(f\left(\dfrac{1}{3}\right)=-\dfrac{1}{3}\) ; \(f\left(1\right)=1\)

\(\Rightarrow-\dfrac{1}{3}\le f\left(t\right)< 1\)

\(\Rightarrow\) Pt có nghiệm khi \(-\dfrac{1}{3}\le-m< 1\)

\(\Leftrightarrow-1< m\le\dfrac{1}{3}\)

Bình luận (0)
KR
Xem chi tiết
TT
Xem chi tiết
LM
Xem chi tiết
KN
31 tháng 1 2020 lúc 21:16

\(m^2\left(x-1\right)+x-3< 0\Leftrightarrow\left(m^2+1\right)x-m^2-3< 0\)

Đặt \(f\left(x\right)=\left(m^2+1\right)x-m^2-3\)

\(f\left(x\right)< 0\forall x\in\left[-5;2\right]\Leftrightarrow\hept{\begin{cases}f\left(-5\right)< 0\\f\left(2\right)< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-6m^2-8< 0\\m^2-1< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6m^2+8>0\\m^2< 1\end{cases}}\Leftrightarrow\left|m\right|< 1\Leftrightarrow-1< m< 1\)

Vậy có duy nhất 1 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán, đó là giá trị m = 0

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NL
16 tháng 12 2020 lúc 7:05

1.

\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)

Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:

\(t^2-3m.t+m=0\) (1) 

Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:

TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)

\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)

\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)

TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)

\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)

\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)

Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)

2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)

Ko tồn tại m thỏa mãn

Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?

 

Bình luận (3)
TD
Xem chi tiết
PT
29 tháng 4 2022 lúc 22:44

loading...  

Bình luận (0)
NT
29 tháng 4 2022 lúc 22:52

loading...

Bình luận (0)
PN
30 tháng 4 2022 lúc 8:43

loading...

Bình luận (0)
DY
Xem chi tiết
NL
16 tháng 3 2022 lúc 22:11

Với \(x=0\) ko là nghiệm

Với \(x\ne0\) chia 2 vế cho \(x^2\)

\(\Rightarrow2x^2+\left(m+1\right)x-36+\dfrac{2\left(m+1\right)}{x}+\dfrac{8}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\dfrac{4}{x^2}+4\right)+\left(m+1\right)\left(x+\dfrac{2}{x}\right)-44=0\)

\(\Leftrightarrow2\left(x+\dfrac{2}{x}\right)^2+\left(m+1\right)\left(x+\dfrac{2}{x}\right)-44=0\)

Đặt \(x+\dfrac{2}{x}=t\Rightarrow x^2-tx+2=0\) (2)

(2) có nghiệm khi \(\Delta=t^2-8\ge0\) (1 nghiệm khi dấu "=" xảy ra, còn lại là 2 nghiệm)

Khi đó pt trở thành:

\(f\left(t\right)=2t^2+\left(m+1\right)t-44=0\) (3)

Do \(ac=-88< 0\) nên (3) luôn có 2 nghiệm pb trái dấu

Phương trình đã cho có đúng 2 nghiệm thực khi:

TH1: (3) có 2 nghiệm pb sao cho \(t^2=8\) , thế vào (1) ko có m thỏa mãn

TH2: (3) có 2 nghiệm thỏa mãn \(\left\{{}\begin{matrix}t_1^2>8\\t_2^2< 8\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t_1< -2\sqrt{2}< t_2< 2\sqrt{2}\\-2\sqrt{2}< t_1< 2\sqrt{2}< t_2\end{matrix}\right.\)

\(\Leftrightarrow f\left(-2\sqrt{2}\right).f\left(2\sqrt{2}\right)< 0\)

\(\Leftrightarrow\left[-2\sqrt{2}\left(m+1\right)-28\right]\left[2\sqrt{2}\left(m+1\right)-28\right]< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{2}\left(m+1\right)>28\\2\sqrt{2}\left(m+1\right)< -28\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m>7\sqrt{2}-1\\m< -7\sqrt{2}-1\end{matrix}\right.\)

Bình luận (0)
DY
Xem chi tiết
NL
11 tháng 11 2021 lúc 18:09

TH1: \(m=3\Rightarrow f\left(x\right)=-5< 0\) với mọi x(ktm)

TH2: \(m>3\Rightarrow f\left(x\right)\) đồng biến trên R

\(\Rightarrow\min\limits_{\left[3;4\right]}f\left(x\right)=f\left(3\right)=3\left(m-3\right)-2m+1=m-8\)

\(m-8>0\Rightarrow m>8\)

TH3: \(m< 3\Rightarrow f\left(x\right)\) nghịch biến trên R

\(\Rightarrow\min\limits_{\left[3;4\right]}=f\left(4\right)=4\left(m-3\right)-2m+1=2m-11\)

\(2m-11>0\Rightarrow m>\dfrac{11}{2}\) (ktm điều kiện \(m< 3\))

Kết hợp lại ta được \(m>8\)

Bình luận (0)